案例带你学Pytorch(5)——TensorboardX详解(2)

本文详细分析TensorboardX的SummaryWriter中的add_graph方法,解释其参数作用,并通过官方demo展示如何使用。文章指出,model参数应传入模型实例,input_to_model为模型输入,且必须存在。此外,探讨了verbose参数的意义。文章提到了启动tensorboard的注意事项,以及遇到的代码运行问题,分享了一个输出图示例,并表示会继续更新。
摘要由CSDN通过智能技术生成

SummaryWriter详解之add_graph示例分析

上一篇分析了SummaryWriter主要函数,本篇借助TensorboardX官方demo,解释add_graph用法

add_graph参数

  • add_graph(self, model, input_to_model=None, verbose=False)
  • model: model (torch.nn.Module): model to draw
    对于model = Linear(),参数形式直接用model,不加括号
    否则需要用Linear(),否则需要加括号
  • input_to_model:input_to_model (torch.Tensor or list of torch.Tensor): a variable or a tuple of variables to be fed.模型输入,可以有一个或者多个。搞不清楚shape时,建议用debug模式观察一下。模型输入必须存在。
  • verbose:字面意思是冗长的、啰嗦的。bool变量,默认为False
  • 启动tensorboard时,–logdir指向的文件夹下,将会递归所有所有文件(存储在子文件夹中不影响)
  • tensorboard --logdir runs有时不工作,可以使用tensorboard --logdir runs --host localhost
  • 采用with SummaryWriter() as writer:写法,可以省掉writer.close()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值