tensorboardx当网络模型输入两个参数时add_graph()报错解决方法

pytorch:0.4.0
python:3.6

File "/user/files/apps/anaconda2/envs/pytorch/lib/python3.6/site-packages/tensorboardX/graph.py", line 85, in graph
list_of_nodes = parse(graph)
File "/user/files/apps/anaconda2/envs/pytorch/lib/python3.6/site-packages/tensorboardX/graph.py", line 61, in parse
n['inputs'][i] = mapping[s]
KeyError: '408'

解决方法:

If I change one line in tensorboardx package (graph.py line 61 of the function parse), everything works fine:

Original:
n['inputs'][i] = mapping[s]
New:
n['inputs'][i] = mapping[s] if s in mapping else ""

具体不知道为啥,之后知道原因后会更新

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,您可以按照以下步骤使用tianshou进行SACPolicy的训练,并且输出训练模型pth,并利用writer.add_graph输出网络结构。 1. 安装tianshou 您可以使用以下命令安装最新版本的tianshou: ``` pip install tianshou ``` 2. 构建环境 您需要构建一个gym环境,然后将其传递给tianshou的环境包装器。以下是一个示例环境: ```python import gym import numpy as np class MyEnv(gym.Env): def __init__(self): self.action_space = gym.spaces.Box(low=-1, high=1, shape=(1,)) self.observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,)) self.state = np.zeros((1,)) def reset(self): self.state = np.zeros((1,)) return self.state def step(self, action): action = np.clip(action, -1, 1) reward = -np.abs(action) self.state += action done = False return self.state, reward, done, {} ``` 在这个环境中,我们使用一个连续的动作空间和一个连续的观测空间,每个步骤的奖励为动作的绝对值的负数。 3. 定义模型 使用tianshou的智能体API,我们可以定义我们的SACPolicy模型: ```python import torch import torch.nn.functional as F from tianshou.policy import SACPolicy class MyModel(torch.nn.Module): def __init__(self, obs_shape, action_shape): super().__init__() self.obs_dim = obs_shape[0] self.act_dim = action_shape[0] self.fc1 = torch.nn.Linear(self.obs_dim, 64) self.fc2 = torch.nn.Linear(64, 64) self.mu_head = torch.nn.Linear(64, self.act_dim) self.sigma_head = torch.nn.Linear(64, self.act_dim) self.value_head = torch.nn.Linear(64, 1) def forward(self, obs, state=None, info={}): x = F.relu(self.fc1(obs)) x = F.relu(self.fc2(x)) mu = self.mu_head(x) sigma = F.softplus(self.sigma_head(x)) value = self.value_head(x) dist = torch.distributions.Normal(mu, sigma) return dist, value ``` 在这个模型中,我们使用两个完全连接的层来处理观察,并将输出分别传递到一个均值头和一个标准差头中。我们还添加了一个价值头来估计每个状态的价值。最后,我们将均值和标准差组合成一个正态分布,以便我们可以从中采样动作。 4. 训练模型 使用tianshou的训练API,我们可以定义我们的训练循环: ```python import torch.optim as optim from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer from torch.utils.tensorboard import SummaryWriter env = MyEnv() train_envs = gym.make('MyEnv-v0') test_envs = gym.make('MyEnv-v0') # 建立replay buffer buffer = ReplayBuffer(size=10000, buffer_num=1) # 建立collector train_collector = Collector(policy, train_envs, buffer) test_collector = Collector(policy, test_envs) # 建立optimizer optimizer = optim.Adam(policy.parameters(), lr=3e-4) # 定义训练循环 result = offpolicy_trainer( policy, train_collector, test_collector, optimizer, max_epoch=100, step_per_epoch=1000, collect_per_step=1, episode_per_test=10, batch_size=64, train_fn=None, test_fn=None, stop_fn=None, writer=writer, verbose=True) ``` 在这个循环中,我们首先创建一个回放缓冲区和一个collector,然后使用Adam优化器来优化我们的模型参数。我们使用offpolicy_trainer方法来训练我们的模型,其中我们设置了一些超参数,如最大epoch数、每个epoch的步数、每个步骤的收集数等。 5. 输出模型 训练完成后,我们可以将模型保存为一个.pth文件: ```python torch.save(policy.state_dict(), 'model.pth') ``` 6. 输出网络结构 最后,我们可以使用以下代码将网络结构写入TensorBoard: ```python writer.add_graph(policy, torch.zeros((1, 1))) ``` 在这个例子中,我们使用一个大小为1的观察空间,以便我们可以将模型传递给writer.add_graph方法。这将在TensorBoard中显示我们的网络结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值