无心剑中译莎士比亚《吾爱稀罕胜天仙》

在这里插入图片描述

莎士比亚十四行诗第130首

Sonnet 130 吾爱稀罕胜天仙

My mistress’ eyes are nothing like the sun;
Coral is far more red than her lips’ red;
If snow be white, why then her breasts are dun;
If hairs be wires, black wires grow on her head.
I have seen roses damask’d, red and white,
But no such roses see I in her cheeks;
And in some perfumes is there more delight
Than in the breath that from my mistress reeks.
I love to hear her speak, yet well I know
That music hath a far more pleasing sound;
I grant I never saw a goddess go;
My mistress, when she walks, treads on the ground.
And yet, by heaven, I think my love as rare
As any she belied with false compare.

爱人明眸不若太阳灿烂
丹唇远不及珊瑚红艳
相比白雪,她胸脯暗淡
倘发若细丝,她乌丝满头卷
粉、红、白玫瑰也曾见
我却不曾见她有玫瑰脸蛋
几多香水令人沉醉陶然
远胜爱人气息甘甜
爱听她娇语呢喃
但深知音乐更令人心欢
当爱人行走世间
我承认没见天仙下凡
但我对天发誓,爱人稀罕
绝不逊色世间任何红颜

译于2022年11月30日

无心剑的翻译《莎士比亚十四行诗第130首》以中文精确捕捉了原诗的意境与情感深度。

诗中开篇即颠覆传统赞美手法,“My mistress’ eyes are nothing like the sun” 直译为“吾爱稀罕胜天仙”,表明诗人所爱之人并非传统意义上的完美。“Coral is far more red than her lips’ red” 及 “If snow be white, why then her breasts are dun” 通过对比,强调了爱人自然之美胜过夸张的比喻。

“I have seen roses damask’d, red and white, But no such roses see I in her cheeks” 通过玫瑰的比喻,诗人表达了对爱人自然之美的欣赏,无需华丽的辞藻修饰。“I love to hear her speak, yet well I know That music hath a far more pleasing sound” 则揭示了诗人对爱人声音的真挚喜爱,尽管明知音乐更加悦耳。

结尾处,“And yet, by heaven, I think my love as rare As any she belied with false compare” 强烈表达了诗人对爱人独特之美的珍视,超越了世俗的虚假比较。

整体上,翻译语言流畅,情感真挚,通过对比和直接的表达,成功传达了原诗对爱人独特之美的赞美,以及诗人对超越表面之美的深刻理解。无心剑的翻译让中文读者能够感受到莎士比亚诗歌的韵味和情感的真挚表达。

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
数据集介绍:STAS目标检测数据集 数据集名称:STAS目标检测数据集 图片数量: - 训练集:733张 - 验证集:211张 - 测试集:105张 总计:1,049张图像 分类类别: - STAS:特定场景下的目标检测类别(具体语义需结合业务背景) - stas:小写形式分类标签,与STAS形成多粒度标注层级 标注格式: YOLO格式,包含归一化中心坐标及边界框尺寸,可直接用于目标检测模型训练。 数据特性: 标注框尺寸分布多样,涵盖大尺度物体(如宽度占比8.5%、高度占比20.8%)到小目标(如宽度占比2.1%、高度占比5.7%),适配多尺度检测需求。 航空影像分析: 适用于无人机/卫星图像中的目标定位与识别,支持农业监测、环境评估等场景。 工业检测系统: 可训练PCB板缺陷检测、传送带物料识别等工业视觉模型,框体标注适配机械臂抓取坐标计算。 智慧城市应用: 支持交通监控、基础设施检测等城市管理场景中的多目标追踪任务。 学术研究: 提供标准化YOLO格式数据,适用于目标检测领域的模型对比实验与算法创新研究。 标注质量突出: 边界框覆盖密集场景(单图最高达7个实例),包含部分重叠目标标注,考验模型鲁棒性。 空间分布全面: 标注框位置覆盖图像中心区(如坐标0.39,0.33)到边缘区域(如坐标0.95,0.85),提升模型全图检测能力。 工程友好性: 原生适配YOLOv5/v8等主流框架,提供标准化train/val/test划分,支持即插即用。 场景适配性强: 标注目标宽高比差异显著(从接近正方形到细长形态),满足不同行业对物体比例的检测需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酒城译痴无心剑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值