在Ubuntu上安装TensorFlow与Keras


在这里插入图片描述

1. 查看系统和Python版本信息

1.1 查看Ubuntu版本信息

  • 执行命令:hostnamectl
  • 解释:这个命令会显示当前操作系统的详细信息

1.2 查看Python版本信息

  • 执行命令:python3 --version
  • 解释:这个命令会显示当前系统中安装的Python版本

2. 安装pip

2.1 下载get-pip.py

  • 执行命令:wget https://bootstrap.pypa.io/get-pip.py
  • 解释:从官方源下载get-pip.py脚本,用于安装pip

2.2 运行get-pip.py

  • 执行命令:sudo python3 get-pip.py
  • 解释:使用Python运行get-pip.py脚本,以安装pip

2.3 查看pip版本

  • 执行命令:pip3 --version
  • 解释:确认pip已成功安装并显示其版本信息

3. 安装Jupyter Notebook

3.1 安装Jupyter Notebook

  • 执行命令:pip3 install jupyter
  • 解释:通过pip安装Jupyter Notebook

3.2 运行Jupyter Notebook

  • 执行命令:jupyter notebook
  • 报错提示安装jupyter-core

3.3 安装jupyter-core

  • 执行命令:sudo apt install jupyter-core
  • 解释:安装Jupyter的核心组件

3.4 配置Jupyter Notebook环境变量

  • 执行命令:sudo vim /etc/profile
    export JUPYTER_HOME=/home/ubuntu/.local
    export PATH=$JUPYTER_HOME/bin:$PATH
    
  • 执行命令:source /etc/profile
  • 解释:配置环境变量并使其生效

3.5 运行jupyter-notebook

  • 执行命令:jupyter-notebook
  • 访问http://localhost:8888/tree查看Jupyter首页

3.6 新建文件夹和笔记

  • 新建python文件夹并进入该文件夹
  • 新建一个未命名笔记(Untitled.ipynb)
  • 输入一条语句并执行(单击Run菜单下的Run Selected Cell)
  • 查看语句执行结果
  • 另存笔记(单击【Save Notebook As…】菜单项并保存)

4. 安装TensorFlow

4.1 安装TensorFlow

  • 执行命令:pip install tensorflow==2.12.0 -i https://mirrors.aliyun.com/pypi/simple/
  • 解释:通过pip安装指定版本的TensorFlow,并指定镜像源以提高下载速度

4.2 验证是否安装成功

  • 启动IPython并查看TensorFlow版本
    import tensorflow as tf
    tf.__version__
    
  • 解释:如果输出TensorFlow的版本号,说明安装成功

5. 安装Keras

5.1 安装Keras

  • 执行命令:sudo pip install keras
  • 解释:通过pip安装Keras

5.2 查看Keras版本

  • 执行命令:pip3 show keras
  • 进入ipython,执行命令
    import keras
    keras.__version__
    
  • 解释:如果输出Keras的版本号,说明安装成功

6. 实战小结

  • 在本次实战中,我们成功地在 Ubuntu 系统上安装了 Python、pip、Jupyter Notebook、TensorFlow 和 Keras。通过一系列命令,我们检查了系统和 Python 版本,下载并安装了 pip,随后安装了 Jupyter Notebook 并解决了环境变量配置问题。接着,我们安装了 TensorFlow 并验证了其版本,最后安装了 Keras 并检查了其版本。这些步骤展示了在 Linux 环境下设置数据科学开发环境的全过程。通过实践,我们加深了对命令行操作和 Python 包管理的理解,为后续的机器学习和深度学习项目打下了坚实的基础。
### 安装准备 为了确保顺利安装 KerasTensorFlow,在 Ubuntu 上需先更新系统软件包列表并升级现有软件包: ```bash sudo apt-get update && sudo apt-get upgrade ``` 接着,安装 Python 的开发工具和 pip 工具以便后续能够管理 Python 包[^2]。 ### 创建虚拟环境 建议创建一个新的 Conda 虚拟环境来隔离项目所需的依赖项。这有助于避免不同项目的库之间发生冲突。激活新创建的名为 `tensorflow_env` 的环境后可继续下一步操作: ```bash conda create --name tensorflow_env python=3.8 conda activate tensorflow_env ``` ### 设置Python版本 由于部分Ubuntu发行版默认使用的是Python 2.x系列,而KerasTensorFlow更倾向于较新的Python版本,因此推荐将系统的默认Python解释器切换到Python 3.x版本。可以通过建立软链接的方式实现这一点[^3]: ```bash sudo ln -sf /usr/bin/python3.6 /usr/bin/python ``` 注意:上述命令中的路径应根据实际安装情况调整至对应的Python 3.x版本位置。 ### 安装必要的数学运算库 对于科学计算而言,BLAS (Basic Linear Algebra Subprograms) 库是非常重要的基础组件之一。在某些情况下可能需要手动安装这些库以支持高效的矩阵运算性能优化。 ### 安装TensorFlow 一旦准备工作完成,就可以通过Conda直接安装TensorFlow了。这种方式能简化依赖关系处理,并且更容易控制所使用的具体版本[^1]。 ```bash conda install tensorflow ``` ### 安装KerasTensorFlow成功安装之后,默认已经包含了Keras接口的支持。但是也可以显式地安装最新的独立Keras包,这样可以获得更多的功能特性以及更快的功能迭代速度。 ```bash pip install keras ``` 以上就是在Ubuntu操作系统上配置好用于深度学习工作的KerasTensorFlow环境的方法概述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酒城译痴无心剑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值