8.6 特殊类型的矩阵和向量

  有些特殊类型的矩阵和向量是有特别用处的。
  对角矩阵(diagonal matrix)只在主对角线上含有非零元素,其他位置都是零。形式上,矩阵 D 是对角矩阵,当且仅当对于所有的ij,Di,j=0。我们已经看到过一个对角矩阵:单位矩阵,其对角元素全部是1.我们用 diag(v) 表示一个对角元素由向量 v 中元素给定的对角方阵。对角矩阵受到关注的部分原因是对角矩阵的乘法计算很高效。计算乘法diag(v)x,我们只需要将 x 中的每个元素xi放大 vi 倍。换言之, diag(v)x=vx 。计算对角方阵的逆矩阵也很高效。对角方阵的逆矩阵存在,当且仅当对角元素都是非零值,在这种情况下,

diag(v)1=diag([1/v1,,1/vn]T)

在很多情况下,我们可以根据任意矩阵导出一些通用的机器学习算法;但通过将一些矩阵限制为对角矩阵,我们可以得到计算代价较低的算法。
  不是所有的对角矩阵都是方阵。长方形的矩阵也有可能是对角矩阵。非方阵的对角矩阵没有逆矩阵,但我们仍然可以高效地计算它们的乘积。对于一个长方形对角矩阵 D 而言,乘法Dx会涉及到 x 中每个元素的缩放,如果D是瘦长型矩阵,那么在缩放后的末尾添加一些零;如果 D 是宽胖型矩阵,那么在缩放后去掉最后一些元素。
  对称(symmetric)矩阵是转置和自己相等的矩阵:
A=AT

当某些不依赖参数顺序的双参数函数生成元素时,对称矩阵经常会出现。例如,如果 A 是一个距离度量矩阵,Ai,j表示点 i 到点j的距离,那么 Ai,j=Aj,i ,因为距离函数是对称的。
   单位向量(unit vector)是具有 单位范数(unit norm)的向量:
||x||2=1

  如果 xTy=0 ,那么向量 x 和向量y互相 正交(orthogonal)。如果两个向量都有非零范数,那么这两个向量之间的夹角是 90 度。在 Rn 中,至多有 n 个范数非零向量互相正交。如果这些向量不仅互相正交,并且范数都为1,那么我们称它们是标准正交(orthonormal)
  正交矩阵(orthonormal matrix)是指行向量和列向量是分别标准正交的方阵:
ATA=AAT=I

这意味着
A1=AT

所以正交矩阵受到关注是因为求逆计算代价小。我们需要注意正交矩阵的定义。反直觉地,正交矩阵的行向量不仅是正交的,还是标准正交的。对于行向量或列向量互相正交但不是标准正交的矩阵没有对应的专有术语。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值