吴恩达深度学习学习笔记——C2W3——超参数调试、Batch正则化和程序框架-2

 

1.6 Batch Norm 为什么奏效?

样本变动(covariate shift)会使得模型的确定变得困难

 

 

在不同的mini-batch中,激活函数a可能会变化较大,batch norm可使其更加“归一”

 

Batch Norm具有轻微的“正则化”效应,但这不是其目的,其目的在于加快训练速度

 

 

1.7 测试时如何使用Batch Norm?

测试时,可使用指数加权平均法来计算均值和方差

 

 

1.8 Softmax 回归

Softmax可用于多分类,是二分类logistic回归的一般形式

 

Softmax层的计算

 

 

Softmax示例

 

 

1.9 训练一个 Softmax 分类器

理解Softmax回归

 

Softmax回归的损失函数

 

Softmax的梯度下降

 

 

1.10 深度学习框架

 

 

1.11 TensorFlow

问题引入

 

Tensorflow代码示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值