吴恩达深度学习学习笔记——C3W1——机器学习策略1-3

 

1.9 可避免偏差

人类水平和训练误差的差距称作可避免误差(avoidable bias)。相同的训练集误差和验证集误差条件下,优化策略取决于人类水平(可看作贝叶斯误差)的高低。比如,图片质量很低时,连人类都难以辨识,此时就不应期望机器能够识别的很好。

详细说明:

 

 

1.10 理解人的表现

问题引入:在以下图像识别示例中,应该如何定义“人类水平误差”?

因为要将人类水平近似看作“贝叶斯误差”,所以这里应该采用最高水平,即,一个经验丰富的医生团队所取得的0.5%的误差,作为“人类水平”

 

误差分析示例:

 

小结:

 

详细说明:

 

 

1.11 超过人的表现

当机器的表现已经超越人类水平后,是该降低偏差还是方差,没有足够信息可以回答。如何让机器做得更好?这是个值得探索的问题。

 

目前,机器已经超越人类的领域有哪些?在线广告、产品推荐、物流、贷款审批(语音识别、部分图像识别(如医学影像(心电图、皮肤癌等))。
这些领域的特点:结构化数据、非感官依赖、大数据。

 

详细说明:

 

 

1.12 改善模型表现

监督学习的两个基本假设:

  1. 可以很好地拟合训练集
  2. 训练集性能可以很好地泛化到开发集和测试集(即,开发集和测试集上的性能接近训练集上的性能)

 

降低可避免偏差及方差的方法

 

详细描述:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值