第四章 动力学-4.1牛顿欧拉公式

        我们先了解一下刚体的牛顿方程,在图4.1.1中刚体以加速度\dot{v}运动,那么就可以用牛顿公式得到

F = m\cdot \dot{v}  (4-1-1)

图4.1.1 作用于质心力F 引起加速度

        同样,刚体旋转时候的欧拉方程,在图4.1.2中,刚体以角速度和角加速度分别为\omega,\dot \omega

旋转时

N=^CI\dot{\omega}+\omega\times^CI\omega  (4-1-2)

图4.1.2 作用于刚体的力矩N 、角速度、角加速度

        其中^C I为刚体在C 中的惯性张量

        (一)、线速度、线加速度公式推导。

图4.1.3 位姿转换

        在前面的章节中,我们根据图4.1.3中,可以轻易的得到下面的关系表达式:

{ ^{A/A}}Q=\ {_B^A}R\ast{ ^{B/B}}P_Q+{ ^A}P_{BORG} (4-1-3)

        那么,如果坐标系B整体移动,不考虑 { ^{B/B}}P_Q 向量的移动跟自身坐标系B 的转动的话,那么有

{^{A/A}}V_Q={ ^A}V_{BORG} (4-1-4)

        此时加上坐标系B ​​​​的中的 {^{B/B}}P_Q 的移动,同时再加上坐标系B的旋转,那么速度公式有如下

{^{A/A}}V_Q={ ^{A/A}}V_{BORG}+{_B^A}R\ast{ ^{B/B}}V_Q+{^A}\omega_B\times{_B^A}R\ast{ ^{B/B}}P_Q (4-1-5)

        其中{ ^{A/A}}V_Q表示为,点Q相对于坐标系A在描述坐标系A下的速度,{ ^A}\omega_B是坐标系B自身的旋转轴。

        将上述公式(4-1-5)等式两边进行求导,根据公式(1-2-18)我们就可以得到加速度公式:

A/A{\dot{V}}_Q=^{A/A}{\dot{V}}_{BORG}+^A{\dot{\omega}}_B\times_B^AR^{B/B}P_Q+^A\omega_B\times\left(A\omega_B\times_B^AR^{B/B}P_Q+_B^AR^{B/B}V_Q\right)+^A\omega_B\times_B^AR^{B/B}V_Q+_B^AR^{B/B}{\dot{V}}_Q (4-1-6)

        通过类比的方法将该公式用于连杆之间的线加速度表达:

^{0/0}{\dot{V}}_{i+1}=^{0/0}{\dot{V}}_i+^{0/0}{\dot{\omega}}_i\times_i^0R^{i/i}P_{i+1}+^{0/0}\omega_i\times\left(^{0/0}\omega_i\times_i^0R^{i/i}P_{i+1}\right)+2^{0/0}\omega_i\times_i^0R^{i/i}V_{i+1}+_i^0R^{i/i}{\dot{V}}_{i+1} (4-1-7)

        式中:0表示世界坐标系。

        等式两边左乘 \ _0^iR,得到

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值