我们先了解一下刚体的牛顿方程,在图4.1.1中刚体以加速度运动,那么就可以用牛顿公式得到
(4-1-1)
图4.1.1 作用于质心力 引起加速度
同样,刚体旋转时候的欧拉方程,在图4.1.2中,刚体以角速度和角加速度分别为,
旋转时
(4-1-2)
图4.1.2 作用于刚体的力矩 、角速度、角加速度
其中为刚体在C 中的惯性张量
(一)、线速度、线加速度公式推导。
图4.1.3 位姿转换
在前面的章节中,我们根据图4.1.3中,可以轻易的得到下面的关系表达式:
(4-1-3)
那么,如果坐标系整体移动,不考虑
向量的移动跟自身坐标系
的转动的话,那么有
(4-1-4)
此时加上坐标系 的中的
的移动,同时再加上坐标系
的旋转,那么速度公式有如下
(4-1-5)
其中表示为,点Q相对于坐标系A在描述坐标系A下的速度,
是坐标系B自身的旋转轴。
将上述公式(4-1-5)等式两边进行求导,根据公式(1-2-18)我们就可以得到加速度公式:
(4-1-6)
通过类比的方法将该公式用于连杆之间的线加速度表达:
(4-1-7)
式中:0表示世界坐标系。
等式两边左乘 ,得到