第四章 动力学-4.1牛顿欧拉公式

        我们先了解一下刚体的牛顿方程,在图4.1.1中刚体以加速度\dot{v}运动,那么就可以用牛顿公式得到

F = m\cdot \dot{v}  (4-1-1)

图4.1.1 作用于质心力F 引起加速度

        同样,刚体旋转时候的欧拉方程,在图4.1.2中,刚体以角速度和角加速度分别为\omega,\dot \omega

旋转时

N=^CI\dot{\omega}+\omega\times^CI\omega  (4-1-2)

图4.1.2 作用于刚体的力矩N 、角速度、角加速度

        其中^C I为刚体在C 中的惯性张量

        (一)、线速度、线加速度公式推导。

图4.1.3 位姿转换

        在前面的章节中,我们根据图4.1.3中,可以轻易的得到下面的关系表达式:

{ ^{A/A}}Q=\ {_B^A}R\ast{ ^{B/B}}P_Q+{ ^A}P_{BORG} (4-1-3)

        那么,如果坐标系B整体移动,不考虑 { ^{B/B}}P_Q 向量的移动跟自身坐标系B 的转动的话,那么有

{^{A/A}}V_Q={ ^A}V_{BORG} (4-1-4)

        此时加上坐标系B ​​​​的中的 {^{B/B}}P_Q 的移动,同时再加上坐标系B的旋转,那么速度公式有如下

{^{A/A}}V_Q={ ^{A/A}}V_{BORG}+{_B^A}R\ast{ ^{B/B}}V_Q+{^A}\omega_B\times{_B^A}R\ast{ ^{B/B}}P_Q (4-1-5)

        其中{ ^{A/A}}V_Q表示为,点Q相对于坐标系A在描述坐标系A下的速度,{ ^A}\omega_B是坐标系B自身的旋转轴。

        将上述公式(4-1-5)等式两边进行求导,根据公式(1-2-18)我们就可以得到加速度公式:

A/A{\dot{V}}_Q=^{A/A}{\dot{V}}_{BORG}+^A{\dot{\omega}}_B\times_B^AR^{B/B}P_Q+^A\omega_B\times\left(A\omega_B\times_B^AR^{B/B}P_Q+_B^AR^{B/B}V_Q\right)+^A\omega_B\times_B^AR^{B/B}V_Q+_B^AR^{B/B}{\dot{V}}_Q (4-1-6)

        通过类比的方法将该公式用于连杆之间的线加速度表达:

^{0/0}{\dot{V}}_{i+1}=^{0/0}{\dot{V}}_i+^{0/0}{\dot{\omega}}_i\times_i^0R^{i/i}P_{i+1}+^{0/0}\omega_i\times\left(^{0/0}\omega_i\times_i^0R^{i/i}P_{i+1}\right)+2^{0/0}\omega_i\times_i^0R^{i/i}V_{i+1}+_i^0R^{i/i}{\dot{V}}_{i+1} (4-1-7)

        式中:0表示世界坐标系。

        等式两边左乘 \ _0^iR,得到

        ^{i/0}{\dot{V}}_{i+1}=^{i/0}{\dot{V}}_i+^{i/0}{\dot{\omega}}_i\times^{i/i}P_{i+1}+^{i/0}\omega_i\times\left(^{i/0}\omega_i\times^{i/i}P_{i+1}\right)+2^{i/0}\omega_i\times^{i/i}V_{i+1}+^{i/i}{\dot{V}}_{i+1} (4-1-8)

        等式两边再次左乘 \ _i^{i+1}R,得到

        ^{i+1/0}{\dot{V}}_{i+1}=_i^{i+1}R\left(^{i/0}{\dot{V}}_i+^{i/0}{\dot{\omega}}_i\times^{i/i}P_{i+1}+^{i/0}\omega_i\times\left(^{i/0}\omega_i\times^{i/i}P_{i+1}\right)+2^{i/0}\omega_i\times^{i/i}V_{i+1}+^{i/i}{\dot{V}}_{i+1}\right) (4-1-9)

        式中:

        \ ^{i/0}\omega_i:连杆i相对于世界坐标系0的角速度在i上的描述或连杆坐标系i相对于世界坐标系0的角速度在i上的描述。

        ^{i/0}{\dot{\omega}}_i:连杆i相对于世界坐标系0 的角加速度在i上的描述或连杆坐标系i相对于世界坐标系0 的角加速度在i上的描述

        ^{i/0}{\dot{V}}_i :连杆坐标系i相对于世界坐标系的线加速度在i上的描述

        ^{i/i}P_{i+1}:坐标系i+1相对于坐标系i 的位置在i上的描述

        a). 当关节为旋转时,^{i/i}V_{i+1}=^{i/i}{\dot{V}}_{i+1}=0,则线加速度为:

^{i+1/0}{\dot{V}}_{i+1}=_i^{i+1}R\left(^{i/0}{\dot{V}}_i+^{i/0}{\dot{\omega}}_i\times^{i/i}P_{i+1}+^{i/0}\omega_i\times\left(^{i/0}\omega_i\times^{i/i}P_{i+1}\right)\right) (4-1-10)

        b). 当关节为移动时:^{i/i}V_{i+1}={​{\dot{d}}_{i+1}}\ ^{i/i+1}{\hat{Z}}_{i+1},\ ^{i/i}{\dot{V}}_{i+1}={​{\ddot{d}}\ _{i+1}}^{i/i+1}{\hat{Z}}_{i+1} , 其中^{i/i+1}{\hat{Z}}_{i+1} 表示连杆i+1相对于坐标系{i+1}在坐标系{i}中的描述。

        则线加速度为:

^{i+1/0}{\dot{V}}_{i+1}=_i^{i+1}R\left(^{i/0}{\dot{V}}_i+^{i/0}{\dot{\omega}}_i\times^{i/i}P_{i+1}+^{i/0}\omega_i\times\left(^{i/0}\omega_i\times^{i/i}P_{i+1}\right)\right)+2\ _i^{i+1}R\ ^{i/0}\omega_i\times{​{\dot{d}}_{i+1}}\ ^{i+1/i+1}{\hat{Z}}_{i+1}+{​{\ddot{d}}_{i+1}}\ ^{i+1/i+1}{\hat{Z}}_{i+1}(4-1-11)

        对于质心处的线加速度:

图4.1.4 质心处矢量

        如图所示,质心处的矢量:^{0/0}P_{ci}=^{0/0}P_i+_i^0R\ ^{i/i}P_{ci} (4-1-12)

        将该公式两边对时间t求导,得:^{0/0}V_{ci}=^{0/0}V_i+^{0/0}\omega_i\times_i^0R\ ^{i/i}P_{ci}+_i^0R\ ^{i/i}V_{ci} (4-1-13)

        再一次对时间t求导,得:^{0/0}{\dot{V}}_{ci}=^{0/0}{\dot{V}}_i+^{0/0}{\dot{\omega}}_i\times_i^0R^{i/i}P_{ci}+^{0/0}\omega_i\times\left(^{0/0}\omega_i\times_i^0R^{i/i}P_{ci}+_i^0R^{i/i}V_{ci}\right)+^{0/0}\omega_i\times_i^0R^{i/i}V_{ci}+_i^0R^{i/i}{\dot{V}}_{ci}

        ^{0/0}{\dot{V}}_{ci}=^{0/0}{\dot{V}}_i+^{0/0}{\dot{\omega}}_i\times_i^0R^{i/i}P_{ci}+^{0/0}\omega_i\times\left(^{0/0}\omega_i\times_i^0R^{i/i}P_{ci}\right)+2^{0/0}\omega_i\times_i^0R^{i/i}V_{ci}+_i^0R^{i/i}{\dot{V}}_{ci} (4-1-14)

        由于ci相对于坐标系{i}的位置是固定的,所以^{i/i}V_{ci}=^{i/i}{\dot{V}}_{ci}=0

        则公式可以化简为:^{0/0}{\dot{V}}_{ci}=^{0/0}{\dot{V}}_i+^{0/0}{\dot{\omega}}_i\times_i^0R^{i/i}P_{ci}+^{0/0}\omega_i\times\left(^{0/0}\omega_i\times_i^0R^{i/i}P_{ci}\right)         (4-1-15)

        两边同时左乘\ _0^iR ,得到:^{i/0}{\dot{V}}_{ci}=^{i/0}{\dot{V}}_i+^{i/0}{\dot{\omega}}_i\times^{i/i}P_{ci}+^{i/0}\omega_i\times\left(^{i/0}\omega_i\times^{i/i}P_{ci}\right)

        \Rightarrow^{i+1/0}{\dot{V}}_{ci+1}=^{i+1/0}{\dot{V}}_{i+1}+^{i+1/0}{\dot{\omega}}_{i+1}\times^{i+1/i+1}P_{ci+1}+^{i+1/0}\omega_{i+1}\times\left(^{i+1/0}\omega_{i+1}\times^{i+1/i+1}P_{ci+1}\right) (4-1-16)

       (三)、角速度、角加速度   

        将角速度公式 ^{A/A}\omega_C=^{A/A}\omega_B+_B^AR^{B/B}\omega_C进行变换,将该公式用于连杆之间的角速度表达为

^{0/0}\omega_{i+1}=^{0/0}\omega_i+_i^0R^{i/i}\omega_{i+1} (4-1-17)

        等式两边左乘 \ _0^iR,得到

^{i/0}\omega_{i+1}=^{i/0}\omega_i+^{i/i}\omega_{i+1} (4-1-18)

        等式两边再次左乘 \ _i^{i+1}R,得到

        ^{i+1/0}\omega_{i+1}=_i^{i+1}R^{i/0}\omega_i+_i^{i+1}R^{i/i}\omega_{i+1} (4-1-19)

       a).       当关节为旋转时,^{i/i}\omega_{i+1}={​{\dot{\theta}}_{i+1}} \ ^{i/i+1}{\hat{Z}}_{i+1}

        则,角速度为:^{i+1/0}\omega_{i+1}=_i^{i+1}R^{i/0}\omega_i+{​{\dot{\theta}}_{i+1}}\ ^{i+1/i+1}{\hat{Z}}_{i+1} (4-1-20)

        b).         当关节为移动时,^{i/i}\omega_{i+1}=0

        则,角速度为 ^{i+1/0}\omega_{i+1}=_i^{i+1}R^{i/0}\omega_i  (4-1-21)

         将角加速度公式 ^{A/A}{\dot{\omega}}_C=^{A/A}{\dot{\omega}}_B+^A\omega_B\times_B^AR^{B/B}\omega_C+_B^AR^{B/B}{\dot{\omega}}_C进行变换, 将该公式用于连杆之间的角加速度表达为

^{0/0}{\dot{\omega}}_{i+1}=^{0/0}{\dot{\omega}}_i+^{0/0}\omega_i\times_i^0R^{i/i}\omega_{i+1}+_i^0R^{i/i}{\dot{\omega}}_{i+1}  (4-1-22)

        等式两边左乘 \ _0^iR,得到

^{i/0}{\dot{\omega}}_{i+1}=^{i/0}{\dot{\omega}}_i+^{i/0}\omega_i\times^{i/i}\omega_{i+1}+^{i/i}{\dot{\omega}}_{i+1}  (4-1-23)

        等式两边再次左乘\ _i^{i+1}R ,得到

^{i+1/0}{\dot{\omega}}_{i+1}=_i^{i+1}R\left(^{i/0}{\dot{\omega}}_i+^{i/0}\omega_i\times^{i/i}\omega_{i+1}+^{i/i}{\dot{\omega}}_{i+1}\right)  (4-1-24)

        a).       当关节为旋转时,^{i/i}\omega_{i+1}={​{\dot{\theta}}_{i+1}}\ ^{i/i+1}{\hat{Z}}_{i+1},^{i/i}{\dot{\omega}}_{i+1}={​{\ddot{\theta}}_{i+1}}\ ^{i/i+1}{\hat{Z}}_{i+1}则,角加速度为:

^{i+1/0}{\dot{\omega}}_{i+1}=_i^{i+1}R^{i/0}{\dot{\omega}}_i+_i^{i+1}R^{i/0}\omega_i\times{​{\dot{\theta}}_{i+1}}\ ^{i+1/i+1}{\hat{Z}}_{i+1}+{​{\ddot{\theta}}_{i+1}}\ ^{i+1/i+1}{\hat{Z}}_{i+1}  (4-1-25)

        b).         当关节为移动时,^{i/i}\omega_{i+1}=0 ,\ ^{i/i}\omega_{i+1}=0

        则,角加速度为:    ^{i+1/0}{\dot{\omega}}_{i+1}=_i^{i+1}R\ ^{i/0}{\dot{\omega}}_i  (4-1-26)      

        至此我们推导的线速度、线加速度、角速度、角加速度公式基本完成,利用上述公式我们进而推导连杆质心处力与力矩

        (四)质心处力与力矩:

^{i+1/i+1}F_{ci+1}={m_{i+1}}^{i+1/0}{\dot{V}}_{ci+1} (4-1-27)

        ^{i+1/i+1}N_{ci+1}=^{ci+1}{I_{i+1}}^{i+1/0}{\dot{\omega}}_{i+1}+^{i+1/0}\omega_{i+1}\times\left(^{ci+1}{I_{i+1}}^{i+1/0}\omega_{i+1}\right) (4-1-28)

          (五)力和力矩向内迭代:

        在无重力状态下,由图4.1.5列出力和力矩的平衡方程。每个连杆都受到相邻连杆的作用力和力矩以及附加的惯性力和力矩。下面我们定义一些符号来表示力和力矩:

^{i/i}f_i =连杆i-1与连杆i之间的作用力作用在i 上,在坐标系i 中的描述

 ^{i/i}n_i =连杆i-1与连杆i之间的力矩作用在i 上,在坐标系i中的描述

图4.1.5 对于单个操作臂连杆的力平衡   

        质心处力分析:

将所有作用在连杆上的力和力矩分别相加,得到力和力矩的平衡公式:

        ^{i/i}F_{ci}=^{i/i}f_i-^{i/i+1}f_{i+1} (4-1-29)

^{i/i}N_{ci}=^{i/i}n_i-^{i/i+1}n_{i+1}-^{i/i}P_{ci}\times^{i/i}f_i-\left(^{i/i}P_{i+1}-^{i/i}P_{ci}\right)\times^{i/i+1}f_{i+1} (4-1-30)

        利用上面两个式子以及旋转矩阵,可以写成:

^{i/i}f_i=^{i/i}F_{ci}+_{i+1}^iR^{i+1/i+1}f_{i+1}  (4-1-31)

        至此,牛顿欧拉公式的推导完成,我们会发现书上的牛顿欧拉公式和我们所推导的完全相同,只是看起来是有点不大一样,是因为书上的公式的内容,部分地方都被省略,或者说公式的某些个符号在读者看来不是特别好理解,所以才会读起来比较难。比如说,书中的牛顿欧拉公式中的符号,少了相对坐标系,全都省略了,但是这样对于初学者来说,是有点疑惑的,例如他们看到这个  {^{i+1}}\omega_{i+1},就会感觉到奇怪,他们会将这个角速度看成i+1连杆相对于i+1的连杆角速度,就会有这样的疑惑,所以才会这地方学起来会有点困难。而我们所有的符号公式,都是基于最开始的两个基本坐标系之间的位置变换推导出来的,这样,我们写起来也有底,具体用哪个公式,具体哪个符号表示什么含义,我们都一清二楚。其实这样推导下来,我们也知道了书中的公式及符号意义,最后回归于书本,也是没有问题的。

  • 17
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值