CVPR2019人脸重建

1、MMFace: A Multi-Metric Regression Network for Unconstrained Face Reconstruction

paper:http://openaccess.thecvf.com/content_CVPR_2019/papers/Yi_MMFace_A_Multi-Metric_Regression_Network_for_Unconstrained_Face_Reconstruction_CVPR_2019_paper.pdf

code:

2、MVF-Net: Multi-View 3D Face Morphable Model Regression(多视图3D人脸变形模型回归

paper:https://arxiv.org/abs/1904.04473
code:https://github.com/Fanziapril/mvfnet

3、Dense 3D Face Decoding Over 2500FPS: Joint Texture & Shape Convolutional Mesh Decoders(2500fps的3D人脸解码,3DMM(3D变形模型)

paper:http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhou_Dense_3D_Face_Decoding_Over_2500FPS_Joint_Texture__Shape_CVPR_2019_paper.pdf

4、GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction(GAN 用于3D 人脸重建

paper:https://arxiv.org/abs/1902.05978

code:https://github.com/barisgecer/ganfi

5、Towards High-Fidelity Nonlinear 3D Face Morphable Model(3DMM(3D变形模型

paper:https://arxiv.org/abs/1904.04933
code:Nonlinear 3D Face Morphable Model 

6、Combining 3D Morphable Models: A Large Scale Face-And-Head Model(3DMM(3D变形模型)

paper:http://openaccess.thecvf.com/content_CVPR_2019/papers/Ploumpis_Combining_3D_Morphable_Models_A_Large_Scale_Face-And-Head_Model_CVPR_2019_paper.pdf
 

7、Self-Supervised Adaptation of High-Fidelity Face Models for Monocular Performance Tracking(单目人脸3D重建、跟踪与动画驱动

paper:http://openaccess.thecvf.com/content_CVPR_2019/papers/Yoon_Self-Supervised_Adaptation_of_High-Fidelity_Face_Models_for_Monocular_Performance_Tracking_CVPR_2019_paper.pdf

8、MMFace: A Multi-Metric Regression Network for Unconstrained Face Reconstruction(多度量回归网络,用于非限制的人脸重建

paper:http://openaccess.thecvf.com/content_CVPR_2019/papers/Yi_MMFace_A_Multi-Metric_Regression_Network_for_Unconstrained_Face_Reconstruction_CVPR_2019_paper.pdf

9、Learning to Regress 3D Face Shape and Expression From an Image Without 3D Supervision(单图像重建3D人脸形状和表情

paper:https://arxiv.org/abs/1905.06817
project:RINGNET
code:GitHub - soubhiksanyal/RingNet: Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision 

10、Boosting Local Shape Matching for Dense 3D Face Correspondence(密集3D人脸对应

paper:http://openaccess.thecvf.com/content_CVPR_2019/papers/Fan_Boosting_Local_Shape_Matching_for_Dense_3D_Face_Correspondence_CVPR_2019_paper.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值