不定积分、定积分的区别与联系

前言:作者在学习微积分时曾对不定积分与定积分产生过许多疑惑,因此在思考总结过后,把自己理解的知识内容分享给大家。

第一:概念

1 不定积分(即反导数)是一种运算,类比于求导运算,求导是求函数的导函数,而导函数具有唯一性;反求导是求函数的原函数,由于运算的特性,求出来的原函数是一个函数族

 

2 定积分是一种求和运算,它的原本方法是划分区间,来求各区间面积和的极限,所以这是个运用极限思想的求和运算。但是函数的横坐标乘上纵坐标的无限相加的极限值,也就是函数与X轴围成的面积,这个面积关于X坐标的函数是函数族(即原函数)中的一种函数。

第二:区别

不定积分(即反导数)与定积分就是两种不同的运算,也可以认为是两种不同的工具(一个是求导逆运算的工具,一个是求给定函数在有限区间里与X轴围成图形的面积的定值)。

两者的出发点不同,前者是为了求处具有普遍意义的函数,而后者是为了求一个具体函数在具体区间的具体面积。

第三:联系

产生联系的地方就在于求定积分可以用极限运算来求,也可以用【x,y】上对应的原函数来求面积,表达式为F(y)-F(x)(函数族中的C常数被相减丢去)。

拓展介绍——

从历史上来看,定积分是比不定积分出现得早的,因为早期的时候需要求各种各样的面积和体积,定积分显然比不定积分更有生活应用中的意义。而不定积分是在定积分产生后才发展的。而不定积分是后来者,在前面知识的基础上,成为了一种总结。

所以不定积分即求原函数的应用可以应用在求定积分上。

题外话:不定积分的“不定”我认为不是积分区间的不定,而是翻译的人那个时候没意识到这个不定会被很多人误解。“不定”应该是求导逆运算求出来的原函数是一个函数族,常数C则是产生函数族的原因,使得反导数出现多种情况,即“不定”情况;而不定积分中的“积分”不是表明这个运算是求积分的,是因为最先出来的求面积的定积分实质上也就是在求原函数的,所以“不定积分”我觉得可以理解为求C常数不固定的原函数的求导逆运算。

 

其实,出现不定积分与定积分的认识误差除了这名字的误导,还有我们对导函数和原函数的产生没有实质的认识。如果你知道求导函数和求原函数和求定积分都是基于极限的,并且知道原函数和导函数的真正产生过程和微积分的历史发展背景,我相信不定积分和定积分的区别与联系,你将不会再有苦恼。

  • 21
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值