线性代数行图像与列图像引入

(这系列笔记面向线性代数的初学者,目的是为了让大家理解线性代数究竟在研究什么?使用的场景是什么?)

一、两组二元一次方程的求解

行图像

 图中求解2x-y=0与-x+2y=3的方程组,然后把所有变量的系数抽取出来,组成矩阵A;

x,y组成向量X,右边数字组成向量b

求解方式就是在直角坐标系中绘画两条直线,交点为求解答案。

这个图象称之为行图像。

列图像

 根据矩阵和向量的运算,得出上图中列向量的线性组合。我们再来看多一副向量图——

 (col 1 代表列向量1,为英文colunm的简写)我们发现列向量1与列向量2有横坐标轴和竖坐标轴上的长度,列向量1的x值——2与列向量2的x值——-1可以通过简单的拼凑拼出0。

那么到现在,我们很明了列图像通过向量的简单加减,就能得出构成向量b

所以,使用列图像比行图像更具备直观性,只需要找到正确的“线形组合”,而“线性组合”是贯穿线代课程的基本方法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值