动归----低价购买

题目描述

“低价购买”这条建议是在奶牛股票市场取得成功的一半规则。要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买;再低价购买”。每次你购买一支股票,你必须用低于你上次购买它的价格购买它。买的次数越多越好!你的目标是在遵循以上建议的前提下,求你最多能购买股票的次数。你将被给出一段时间内一支股票每天的出售价(2^16范围内的正整数),你可以选择在哪些天购买这支股票。每次购买都必须遵循“低价购买;再低价购买”的原则。写一个程序计算最大购买次数。

这里是某支股票的价格清单:

日期 1 2 3 4 5 6 7 8 9 10 11 12

价格 68 69 54 64 68 64 70 67 78 62 98 87

最优秀的投资者可以购买最多4次股票,可行方案中的一种是:

日期 2 5 6 10

价格 69 68 64 62

输入输出格式

输入格式:

第1行: N (1 <= N <= 5000),股票发行天数

第2行: N个数,是每天的股票价格。

输出格式:

输出文件仅一行包含两个数:最大购买次数和拥有最大购买次数的方案数(<=2^31)当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这2种方案被认为是相同的。

题解:

第一问最长上升子序列,从前向后遍历,不断比较记录即可;

第二问,先通过第一问的f【x】计算出那两个数相邻(既可以买完i后买j, 叫作i,j相邻),故只要f[i]+1=f[j]&&a[i]<a[j]就符合,

而消除重复的,本题要求它们构成的价格队列不一样,如1 1 2 你必须把前边那两个等价状态删一个,即若f[i]==f[j]&&a[i]==a[j],

g[i]=0(删去);

代码:

#include<iostream>
#include<cstdio>
#include<string>
using namespace std;
int n,a[5050],f[5050],ans1=-9999999,ans2=0;
int g[5050];
int main()
{
 cin>>n;
 for(int i=1;i<=n;i++)
 cin>>a[i];
 for(int i=1;i<=n;i++)
 { f[i]=1;
  for(int j=1;j<i;j++)
  if(a[i]<a[j]) f[i]=max(f[i],f[j]+1);
  ans1=max(ans1,f[i]);
 }    
 for(int i=1;i<=n;i++)
 {
     g[i]=f[i]==1;//当f[i]==1时,g[i]=1,只是初状态
     for(int j=1;j<i;j++)//j不能有等号,否则会被下一条语句给附成0 
     { if(a[i]==a[j]&&f[i]==f[j]) g[i]=0;
       if(a[i]<a[j]&&f[i]==f[j]+1) g[i]=g[i]+g[j];
    }
    
 }
 for(int i=1;i<=n;i++)
 {
     if(f[i]==ans1) ans2=ans2+g[i];
 } 
 cout<<ans1<<" "<<ans2;


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值