自动驾驶 vs 传统驾驶体验分析

使用驾驶模拟器对自动驾驶车辆与人工驾驶车辆中个人驾驶体验的分析

摘要

具备自动驾驶能力的智能车辆将在不久的将来实现商业化。为了建立驾驶员与车辆之间的有益关系,分析驾驶员对自动驾驶车辆相较于人工驾驶(传统)车辆的反应至关重要。在本研究中,我们重点分析了有经验的驾驶员和新手驾驶员在多种道路状况下对自动驾驶和传统驾驶的个人驾驶体验。我们首先开发了一个简化的驾驶模拟器,该模拟器能够连接任意接口,创建包含驾驶员在真实驾驶中会遇到的场景和事件的虚拟环境,并实现完全自动驾驶。随后,我们开展了实验以明确两组驾驶员在自动驾驶体验上的差异。实验结果表明,有经验的驾驶员主要由于灵活性和驾驶乐趣而倾向于选择传统驾驶,而新手则由于自动驾驶固有的简便性和安全性更倾向于选择自动驾驶。深入分析表明,驾驶员更希望根据道路和交通状况交替使用这两种驾驶方法。

I. 引言

在不久的将来,智能自动驾驶车辆将取代目前道路上相当大百分比的汽车,这是不可避免的。日产、梅赛德斯和沃尔沃等领先的汽车公司已宣布将在2020年推出具备自动驾驶能力的乘用车。2014年,谷歌展示了一款自动驾驶汽车原型,该车没有方向盘、油门和刹车踏板。与人类驾驶(传统)车辆相比,自动驾驶车辆具有诸多优势,例如通过消除人为错误减少车辆碰撞数量,提高残疾人和老年人的出行便利性,使驾驶员能够在行车时间内从事其他活动从而提升生产效率,以及改善交通流和燃油效率。

请注意,它们仍然存在一些缺点,例如在恶劣天气条件下性能较差、存在自动化故障的风险以及缺乏驾驶乐趣。由于这些缺点,驾驶员和乘客接受度是自动驾驶汽车广泛普及的最大障碍之一。因此,分析驾驶员对自动驾驶的反应,并评估驾驶体验,以制定未来智能车辆有益的人车交互方式,显得尤为重要。在汽车工程领域,针对车载系统驾驶员偏好和用户体验评估的研究已在不同范围内开展,包括转向用力偏好的量化、客观偏好指标的建立以及操纵杆控制的绩效评估。然而,截至目前,尚无研究对传统驾驶与自动驾驶的驾驶体验进行比较。

为了评估驾驶体验,最好使用实车进行真实世界实验。然而,在开展道路实验时,我们面临着许多需要克服的困难,例如实验规划和实施所需的时间相当长、驾驶员及其他道路使用者的安全、实验条件的一致性和可重复性、责任问题以及法规限制。相比之下,驾驶模拟器能够在受控环境中提供可重复性、一致性和安全性,并在编写场景及创建极端事件方面表现出色的灵活性。此外,使用模拟器进行驾驶实验也更加经济且节省时间。然而,商用驾驶模拟器价格昂贵,不适合用于本初步研究。因此,我们开发了一款驾驶模拟器,采用免费软件和现成硬件组件,但具备足够功能以分析驾驶体验,如图1所示。

本研究旨在阐明自动驾驶与传统驾驶在驾驶体验上的差异。作为一项基础性研究,本文重点关注个体差异——有经验的驾驶员与新手驾驶员之间存在差异,他们在驾驶偏好和驾驶感受方面会有显著不同。本文结构如下:第二节详细介绍驾驶模拟器的开发;第三节描述实验程序以及在虚拟环境中触发的事件;第四节展示驾驶员偏好、任务负荷指数和问卷的结果;第五节讨论结果并对两组驾驶员的偏好进行对比;最后,第六节总结本研究的发现,并对未来工作提出展望。

示意图0

II. 驾驶模拟器的开发

在此,我们阐明了用于评估自动驾驶和传统驾驶中驾驶体验的驾驶模拟器的要求,并描述了该模拟器的开发过程。

A. 要求

驾驶模拟器已为各种目的而开发,包括高级驾驶辅助系统的测试与训练、整车动力学仿真以及利用真实世界数据提升模拟器能力。由于大多数模拟器主要关注精确模拟实际驾驶并评估驾驶辅助技术,因此它们不符合本研究的目的。在此,我们描述了为实现目标而在模拟器中需要实现的特征和功能。这些特征和功能使我们的模拟器成为一个独特的平台,可用于评估任意驾驶模式下的驾驶体验,不仅限于自动驾驶,还包括传统驾驶。

  • 自动驾驶与动态行为的再现 :我们需要创建一个具备轨迹生成和动态障碍物避让能力的自动驾驶车辆模型。我们的模拟器还必须具备实时数据采集、触发式控制点、天气效果和动态响应(例如加速度和碰撞)等通用功能。
  • 任意场景与事件的创建 :我们的模拟器必须具备在虚拟环境中轻松布置多种类型对象(例如道路和交通灯)的功能。我们需要设计能够突出自动驾驶与传统驾驶优缺点的场景与事件。特别是,我们重现那些不同驾驶方法之间差异显著的场景。
  • 与任意人机界面的连接 :为了比较两种驾驶方法,除了传统的车辆控制器外,我们还开发了用于自动驾驶车辆的控制接口。该模拟器还必须配备一个显示器,以从驾驶员视角显示虚拟环境。

B. 虚拟环境

作为软件平台,我们使用了流行的Unity开发引擎,该引擎常用于三维(3D)内容创作,例如游戏和动画。与使用OpenGL(一种典型的图形引擎)相比,其丰富的应用程序编程接口(API)、直观的工具和资源商店有助于显著缩短开发时间。

1) 车辆、道路及其他物体的创建 :我们使用来自Unity资源商店的免费3D模型创建了虚拟环境和不同场景。这些模型包括道路模块、道路标志、交通信号灯、车辆、行人、树木和建筑物,如图2所示。我们为目标车辆设计了5速自动变速系统和2l汽油发动机。悬架阻尼、重心和转弯半径均设置为中型轿车的标准值。虚拟环境中的发动机声音及其他环境噪声通过2.1声道音响系统播放。

2) 自动和动态行为的复现 :目标车辆、其他交通车辆、行人和交通信号灯由使用C#和JavaScript编写的脚本控制。我们为交通控制设置了触发式控制点,并创建了传感器脚本以实现对其他车辆运动的基于规则的控制。对于自动驾驶车辆,我们采用了相同的基于规则的控制方法,并结合Unity的路径规划算法与动态避障功能,实现了完全自动驾驶。

3) 场景与事件的实现 :我们可以通过组合道路模块、交通灯、由脚本规则控制的其他车辆和行人来创建任意的驾驶路线。在实验中,我们创建了一条2公里长的驾驶路线,包括一段高速公路、市区、乡村、住宅区和一个停车场,这些因素会影响驾驶员的个体差异和驾驶体验。此外,我们设计了多个驾驶员在实际驾驶中会遇到的事件。我们将在第三节中详细描述这些场景与事件。

示意图1

C. 人机界面

作为硬件平台,我们准备了一个显示器用于显示驾驶员视野以及两种类型的控制界面。

1) 再现驾驶员的视野 :我们使用了一块27英寸、分辨率为2048 x 1152的液晶显示屏,用于从驾驶员视角显示虚拟环境。后视镜和侧视镜的视图也被渲染出来,如图3(a)所示。此外,我们还加入了速度计、转向灯指示器以及一个在超速时会闪烁的警告指示灯,当驾驶员超速时。

2) 控制界面 :我们使用带有油门、刹车和离合器踏板以及换挡杆的罗技G27方向盘作为传统驾驶的车辆控制器。该控制器通过USB接口连接到计算机,如图3(b)所示。相比之下,控制自动驾驶智能车辆可以采用多种人机界面,利用语音、触觉反馈和手势进行操作。在本研究中,我们决定主要使用触摸显示界面,因为驾驶员对触摸屏设备的使用非常熟悉,因此使用触摸界面更加直观。此外,与其他界面相比,触摸界面的开发时间更短。因此,我们提出了一种在微软Surface Pro 3上实现的触摸界面,作为自动驾驶的控制接口,如图3(c)所示。该界面的交互式图形用户界面也是使用Unity开发的。概览地图(包括目标车辆)显示在触摸屏上。地图的显示会保持目标车辆始终朝向屏幕顶部方向行驶。驾驶员可以通过简单的触摸手势输入最终目的地,具体为单击选择目的地,双击确认。驾驶员还可以通过滑动移动地图,通过捏合缩放进行放大和缩小。该界面还提供视觉和听觉反馈,以指示对用户输入的接受或拒绝。

3) 计算机和数据采集 :在仿真中,我们使用了一台运行Windows 8.1的台式计算机,配备英特尔酷睿i7处理器、16GB内存和英特尔HD显卡。此外,车辆遥测数据(例如位置和速度)、来自车辆控制器的输入(如转向角、刹车和油门踏板位置)以及代表每位参与者驾驶行为的触摸输入坐标,均以100赫兹的频率进行记录。

示意图2

III. 驾驶路线与实验条件

我们解释了在虚拟环境中创建的驾驶路线,该路线包含多个场景与事件。我们还描述了实验条件,包括流程,并提供了参与者的相关信息。

A. 场景与事件

为了分析个人驾驶体验,虚拟环境应包含多个场景与事件,以代表驾驶员在真实驾驶过程中遇到的各种条件和情况。因此,我们创建了一条2公里长的驾驶路线,包括以下四个感兴趣区域,如图4中心所示。这些区域包括高速公路(R1)、市区(R2)、农村和住宅区(R3)以及停车(R4),如图4(a)–(d)所示。我们还在每个区域触发了多个事件(E)。

1) 高速公路区域 :一段具有多车道的高速公路要求驾驶员进行并道、变道和驶出出口(图4(a))。作为事件,由于道路施工(ER1−1),其中一条车道被关闭。在该车道上行驶的车辆需要并入右侧车道。

2) 市区 :市区包含交叉路口、交通信号灯、人行横道、铁路平交道口以及交通拥堵路段,这些情况要求驾驶员频繁刹车和/或停车(图4(b))。针对该区域的事件是:目标车辆前方的一辆汽车突然停下,需要进行超车(ER2−1)。

3) 农村和住宅区 :乡村和住宅区的交通流量较低,但存在能见度低且不受交通信号灯控制的交叉路口,这要求驾驶员更加小心(图4(c‐1))。事件场景为一辆汽车因机械故障停靠在路边,并阻挡了一半的行车道,如图4(c‐2)所示。驾驶员需要等待对向车流超越停靠车辆后方可通行(ER3−1)。此外,乡村地区出现了突发交通改道情况,驾驶员需根据道路标志指示行驶绕行道路(ER3−2)。同时,一名戴耳机的行人横穿马路,未注意目标车辆(ER3−3)(图4(c‐3))。驾驶员必须立即刹车以避免发生碰撞。

4) 停车区域 :停车场内有停放的车辆和人员。目标车辆有一个专用停车位(图4(d))。事件发生时,有一名人员站在专用停车位旁边,要求驾驶员格外小心以避免撞到她(ER4−1)。

示意图3

B. 实验条件

1) 实验流程 :首先,我们向参与者简要介绍了驾驶模拟器、控制器和触摸界面。然后,参与者在训练赛道上练习转弯、制动、速度控制以及交通规则遵守,练习方式包括常规驾驶和自动驾驶模式。训练赛道包含直道路段、左右转弯、弯道和交叉路口。接着,我们向参与者说明了驾驶路线和目标,即在遵守道路规则的前提下尽快到达目的地。在前两轮试验中,他们使用方向盘以及油门和刹车踏板以常规方式驾驶。随后,他们使用触摸界面控制器在同一道路上以自动驾驶模式进行驾驶。在休息15分钟后,我们要求他们重复相同的流程。在第二轮试验中,我们触发了第三节中提到的事件,且未事先告知参与者这些事件。

2) 参与者 :十二名健康大学生(11名男性,1名女性),年龄范围21至24岁(平均值:22.6,标准差:0.86)参与了实验。他们均具有正常或矫正至正常视力。其中六人驾驶经验少于2年,被分配至新手组;其余六人有2至8年经验,被分配至有经验组。

3) 评估 :我们记录了每位参与者在每次试验中的任务完成时间,作为时间效率指标;同时记录了碰撞次数(注意在自动驾驶过程中未发生任何碰撞,因为车辆能够自主避免潜在碰撞),作为安全指标。最后,我们要求参与者使用NASA任务负荷指数(NASA‐TLX)以及关于偏好和偏好原因的问卷,对他们的体验进行评估,作为主观可用性指标。

IV. 实验结果

在本节中,我们展示了与自动驾驶车辆和传统车辆驾驶体验的定量与定性评估相关的实验结果。

A. 定量结果:时间、碰撞和心理工作负荷

示意图4
图5(a)和(b)分别显示了模拟器记录的两组的平均完成时间和平均碰撞次数。在自动驾驶条件下,完成时间有所减少(约减少18.3%)。从图5(b)中可以看出两组之间驾驶技能的差异。在第二轮试验中,有经验驾驶员和新手驾驶员的平均碰撞次数分别为1.67和3.67。
示意图5
图6(a)和(b)展示了NASA‐TLX的结果。它们明确表明,在自动驾驶条件下,两组在NASA‐TLX的每个参数上的工作负荷均有所降低。新手在自动驾驶中的总体工作负荷比传统驾驶低41.3%,而在有经验驾驶员中则低49.1%。因此,我们可以从这些结果推断,自动驾驶在时间效率、安全性和相关工作负荷方面优于传统驾驶。

B. 定性结果:偏好与原因问卷

我们设计了一份问卷,以了解他们对传统驾驶和自动驾驶的偏好。
示意图6
图7显示了总体以及各地区偏好的驾驶方法。从图7(a)中我们发现,新手驾驶员对自动驾驶和传统驾驶的偏好没有差异,但我们能够看到显著的不同之处。有经验的驾驶员在偏好上存在差异。其中,67%的有经验的驾驶员更喜欢传统驾驶完成整个行程,而只有33%的有经验的驾驶员更喜欢自动驾驶。

接着,为了更详细地分析结果,我们询问了两组驾驶员在每个区域的首选驾驶方式及其原因。在提供原因时,我们为他们留出了空间以自由表达观点。因此,我们能够从他们的回答中看出驾驶员的特征和态度。我们将他们偏好的原因归类为:(i) 驾驶乐趣,(ii) 灵活性,(iii) 可靠性,(iv) 控制感,(v) 努力,以及(vi) 驾驶技能无关。
示意图7
图8展示了所有场景及各个区域首选驾驶方式的六个指标。对于所有场景,如图8(a)所示,有经验的驾驶员将驾驶乐趣、灵活性和可靠性列为偏好传统驾驶的主要原因,而新手驾驶员则将较少的努力和驾驶技能无关视为偏好自动驾驶的关键原因。接下来,我们将解释各感兴趣区域驾驶员对驾驶方式的偏好及其选择原因。

1) 高速公路 R1 :在新手中,83%的人更倾向于自动驾驶,而只有17%的人选择传统驾驶(图7(b))。并道和变道时的简便性和可靠性是他们选择的主要原因。他们提到控制方向盘和踏板是一种负担,特别是并道操作较难完成。由于缺乏驾驶信心和经验,他们在执行这些需要心理和身体上付出较多努力的任务时,对安全问题更为关注。
另一方面,83%的有经验的驾驶员更喜欢传统驾驶,而只有17%的驾驶员更喜欢自动驾驶。他们中的大多数人提到在高速公路上进行传统驾驶时,可以灵活地变换车道和控制车辆速度是其偏好的原因(图8(b))。他们更愿意自己手动改变车道和车速,而不是让车辆自动完成。我们可以推断,在高速驾驶过程中完全掌控车辆能够满足有经验的驾驶员的需求,并为他们提供驾驶的乐趣。

2) 市区 R2 :在此感兴趣区域中,两组之间的偏好没有差异(图7(c))。83%的新手和有经验的驾驶员都选择了自动驾驶,而只有17%的人更倾向于传统驾驶。他们提到,在走走停停的交通中驾驶令人疲惫且需要付出大量努力。由于城市交通驾驶单调,有经验的驾驶员表示他们不想专注于驾驶。新手则提到反复刹车和加速很困难。因此,我们可以推断,无论经验如何,驾驶员选择自动驾驶的主要原因是,在走走停停的交通中,传统驾驶会导致驾驶员疲劳(图8(c))。

3) 农村和住宅区 R3 :由于交通拥堵和交通信号灯相对较少,该区域的驾驶比其他区域需要更低的努力。在这里,我们可以看到两组之间的显著差异(图7(d))。83%的新手选择自动驾驶,称其比传统驾驶更安全、可靠且更容易。然而,对于有经验的驾驶员来说,结果却大不相同。他们中有67%选择传统驾驶,而33%表示他们更喜欢在该地区使用自动驾驶。大多数有经验的驾驶员提到,在该区域驾驶很舒适,能够体验到驾驶乐趣(图8(d))。

4) 停车 R4 :两组所有参与者均选择在停车场景中使用自动驾驶(图7(e))。停车需要驾驶员更加关注周围环境,尤其是在倒车时。根据可用空间以及附近移动的其他车辆和人员情况,转向和速度控制可能会变得麻烦。由于该车辆没有倒车摄像头,驾驶员只能依赖后视镜和侧视镜。无论经验如何,两组驾驶员都认为,以传统方式停车需要良好的驾驶技能并付出大量努力。驾驶技能、更低的努力和可靠性被提及为他们选择的关键原因(图8(e))。可以看出,无论经验如何,驾驶员都不喜欢手动停车。

V. 讨论

我们可以看出,有经验的驾驶员更关注驾驶乐趣和车辆控制的灵活性,而新手则更关心自动驾驶的简便性和安全性。需要注意的是,本初步实验中所使用的算法与实际的自动驾驶算法相比还较为简单和有限。该结果表明,自动驾驶车辆应根据驾驶员的经验调整驾驶乐趣和车辆控制灵活性的程度。此外,结果也强调了需要一种新的人机界面,以使驾驶员能够无缝地调节对自动驾驶车辆的人为控制程度。

VI. 结论与未来工作

在本研究中,我们分析了经验丰富的驾驶员和新手驾驶员在自动驾驶车辆与人工驾驶(传统)车辆中的个人驾驶体验。为了有效且高效地开展实验,我们开发了一款简化的驾驶模拟器。我们创建了四个区域以促进在阐明自动驾驶模式与传统驾驶模式之间的差异。十二名参与者(六名经验丰富的驾驶员和六名新手)参与了实验,分别在两种驾驶模式和不同条件下进行驾驶。实验结果表明,两组参与者在城市交通和停车场景中均更倾向于选择自动驾驶模式。此外,深入分析显示,驾驶员会根据道路和交通状况交替使用这两种驾驶方法。在未来的工作中,我们将加入运动平台,通过增加显示器数量来扩大视野,从而最终提升模拟器的真实感效果。此外,我们还将在实验中纳入更广泛的参与者范围,包括但不限于老年驾驶员、残障人士以及专业驾驶员。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值