翻译: matplotlib 所有的color、 marker参数 ( 例: 折线图)

matplotlib.pyplot.plot官方文档点击这里

常用的color参数
wwhite
bblue
ggreen
rred
ccyan        #   青色/蓝绿色
mmagenta  #    品红/洋红色
yyellow
kblack

 

  • Marker常见参数:

附注:

· 所有marker的官网链接

· 图片来源:Python Matplotlib (pyplot), a step-by-step Tutorial


折线图函数

matplotlib.pyplot.plot(
                       *args,
                       **kwargs
                       )
  • 可变位置参数:
  1. python中规定参数前带 * 的,称为可变位置参数,只是我们通常称这个可变位置参数为*args而已,叫其他的一样一样滴。
  2. *args:是一个列表,传入的参数会被放进列表里。
  • 可变关键字参数:
  1. 同理,python中规定参数前 带 ** 的,称为可变关键字参数,通常用**kwargs表示。
  2. **kwargs:是一个字典,传入的参数以键值对的形式存放到字典里。

一、常用参数部分:

  1. lable:设定坐标线的标签, e.g. ax1.plot(x1, y1, label='x的label')
  2. title:设定标题。e.g. plt.title('title_name')
  3. y :纵坐标。
  4. x :默认为[0, 1, ... , N-1],可手动设定。
  5. data:是:一个自带坐标标签(lable)的数据。如果指定,x坐标y坐标将会显示数据源标签名称;
  6. color:设定线的颜色;
  7. marker:设定节点的样式;
  8. alpha设定图的透明度,取值范围是[0,1]。

例子:

from numpy.random import randn
import matplotlib.pyplot as plt

data = randn(30).cumsum()
plt.plot(data)          

plt.show()
  • plt.plot(data) 等价于 plt.plot(data, 'k-') ,等价于 plt.plot(y=data, kind='line', color='k', linestyle='line'),表示k黑色、o圆节点、- 连续连接线(连接2个O形点);
  • plt.plot()如果没有连接节点的linestyle参数,结果将为散点图

 

二、**kwargs参数部分(未完待续)

  1. ls 或者 linestyle:设定折线的格式,[文字表述版为‘ solid’, 'dashed', 'dashdot', 'dotted'],符号表述版[ '-', '--', '-.', ':'];
  2. lw 或者 linewidth:设定折线的宽度,
  3. drawstyle:指定画图的格式,比如drawstyle='steps-post',即阶梯图线;
  4. ms 或者 markersize:设定大小;
  5. mec 或者 markeredgecolor:设定边框的颜色;
  6. mew 或者 markeredgewidth:设定边框粗细的值;
  7. mfc 或者 markerfacecolor:设定填充的颜色;
  8. ax1.set_xlable:设定ax1(子图)x坐标的名称
  9. ax1.set_ylable设定ax1(子图)y坐标的名称
  10. 其他待续参数

例子1:

from numpy.random import randn
import matplotlib.pyplot as plt

data = randn(30).cumsum() 
plt.plot(data, 'ro--', drawstyle='steps-post')  

plt.show()

例子2:

"""本处不适合新手看"""
import numpy as np
import matplotlib.pyplot as plt

fig, ax1 = plt.subplots(1, 1)                        # 作出图表窗口

ax2 = ax1.twinx()                                    # 让图线1和图线2 共用x坐标轴


x1 = np.linspace(1, 4*np.pi, 100)                    # 设定x1的取值(在[1,4π]取100个数)
y1 = np.sin(x1)
function1 = ax1.plot(x1, y1, 'b', label='Sine')      # 指定x坐标和y坐标的数据,设定图线颜色为蓝色blue,图线标签为“Sine”

x2 = np.linspace(0, 4*np.pi, 100)
y2 = np.cos(x2)
function2 = ax2.plot(x2, y2, 'r', label='Cosine')


functions = function1 + function2                     # 设定总的图线为 function1 加 function2
labels = [f.get_label() for f in functions]           # 设定总的label框里边包含的内容,即“Sine”和“Cosine”
plt.legend(functions, labels, loc=0)                  # 使用legend()函数,将“总funciton”和“总labels”做成图表。

ax1.set_xlabel('$x$')                                 # 设定2坐标轴的标签,"$$"作用是“斜体”
ax1.set_ylabel('$y_1$')
ax2.set_ylabel('$y_2$')

plt.title('Sine and Cosine')                          # 设定总图表的标题为“Sine and Cosine”

plt.tight_layout()                                    # .tight_layout(),调整图表,使得窗口的页边距大小适合。

plt.show()

代码连接:Python Matplotlib (pyplot), a step-by-step Tutorial

 

  • “线”的color大全:

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值