联邦学习 pFedHN算法

pFedHN全称      

Personalized Federated Learning using Hypernetworks

基于超网络的个性化联邦学习

论文地址: 《Personalized Federated Learning using Hypernetworks》
github地址: https://github.com/AvivSham/pFedHN

原文算法:

R     number of rounds                全局迭代次数

K     number of local rounds        客户端本地迭代次数

α     learning rate                        全局学习率

η     client learning rate                客户端本地学习率

逐句分析

第一句:

       操作:在c++中等价于for(int x=0;x<R;x++)

第二句:

       操作:从n个客户端中选择某个客户端i

第三句:(因为打不出上标,θ(~)i代表θ上面有个~)

       解释:该算法定义了一个函数h(x,y);其中θi表示客户端本地模型的参数;vi是全局模型对于客户端i的一个参数,它在处理不同的客户端时取值不同,用于体现个性化;φ是全局模型的另一个参数,用于体现不同客户端之间的某些共性;θ(~)i表示改变后的θi值,在这里可以理解为一个局部变量,用来存储改变后的值,因为θ(~)i要进行多次迭代更新,而且后面要用到的是θi改变后与改变前的差值

       操作:set...and...就是分别进行两个赋值

第四句:

       操作:类似第一句

第五句:

       解释:Si指的是第i个客户端的总样本空间

       操作:从第i个客户端的总样本空间中选部分样本B

第六句:

       解释:∇代表Nabla算子,通常用于求梯度(各个自变量偏导数的和),而∇θ(~)i则代表对θ(~)i求偏导,但是由于θ(~)i代表的是神经网络中的一系列参数,所以其实还是求梯度;Li(x)代表的是经历神经网络后得到的损失函数,用于评估神经网络的效果

       操作:运算然后赋值

第七句:

       解释:Δθi为θ(~)i与θi的差值

第八九句:

       操作:类比第六句更新vi φ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值