高维空间中的投影矩阵

高维空间中的投影矩阵

假设向量 b = ( b ( 1 ) , b ( 2 ) , . . . , b ( n ) ) T ∈ R n \boldsymbol{b}=(b^{(1)},b^{(2)},...,b^{(n)})^\mathrm{T} \in R^n b=(b(1),b(2),...,b(n))TRn,投影到一个 m m m维的超平面 M M M中,得到向量 a = ( a ( 1 ) , a ( 2 ) , . . . , a ( n ) ) T \boldsymbol{a}=(a^{(1)},a^{(2)},...,a^{(n)})^\mathrm{T} a=(a(1),a(2),...,a(n))T
首先, a \boldsymbol{a} a可分解为 M M M中一组基向量 a 1 , a 2 , . . . , a m \boldsymbol{a}_1,\boldsymbol{a}_2,...,\boldsymbol{a}_m a1,a2,...,am(其中 a i = ( a i ( 1 ) , a i ( 2 ) , . . . , a i ( n ) ) T , i = 1 , 2 , . . . m \boldsymbol{a}_i=(a_i^{(1)},a_i^{(2)},...,a_i^{(n)})^\mathrm{T},i=1,2,...m ai=(ai(1),ai(2),...,ai(n))T,i=1,2,...m)的线性组合,即 a = x 1 a 1 + x 2 a 2 + . . . + x m a m \boldsymbol{a}=x_1\boldsymbol{a}_1+x_2\boldsymbol{a}_2+...+x_m\boldsymbol{a}_m a=x1a1+x2a2+...+xmam
这里 x 1 , . . . , x m x_1,...,x_m x1,...,xm是每个基向量的系数
也可以表示成矩阵形式 a = A x \boldsymbol{a}=A\boldsymbol{x} a=Ax
其中 A = [ a 1 , a 2 , . . . , a m ] A=[\boldsymbol{a}_1,\boldsymbol{a}_2,...,\boldsymbol{a}_m] A=[a1,a2,...,am]是一个 n × m n\times m n×m的矩阵, x = [ x 1 , x 2 , . . . , x m ] T \boldsymbol{x}=[x_1,x_2,...,x_m]^\mathrm{T} x=[x1,x2,...,xm]T为系数向量
另一方面,根据投影的性质,向量 ( b − a ) ∈ M ⊥ (\boldsymbol{b}-\boldsymbol{a})\in M^{\perp} (ba)M,也就是说向量 b − a = b − A x \boldsymbol{b}-\boldsymbol{a}=\boldsymbol{b}-A\boldsymbol{x} ba=bAx与任意一个 M M M中的基向量 a i \boldsymbol{a}_i ai垂直,那么 a i ⋅ ( b − A x ) = a i T ( b − A x ) = 0 \boldsymbol{a}_i\cdot(\boldsymbol{b}-A\boldsymbol{x})=\boldsymbol{a}_i^\mathrm{T}(\boldsymbol{b}-A\boldsymbol{x})=0 ai(bAx)=aiT(bAx)=0其中 i = 1 , 2 , . . . , m i=1,2,...,m i=1,2,...,m,将这 m m m个式子合并成矩阵形式 A T ( b − A x ) = 0 A^\mathrm{T}(\boldsymbol{b}-A\boldsymbol{x})=\boldsymbol{0} AT(bAx)=0可求得 x = ( A T A ) − 1 A T b \boldsymbol{x}=(A^\mathrm{T}A)^{-1}A^\mathrm{T}\boldsymbol{b} x=(ATA)1ATb这里, A A A的列向量为 M M M的基向量,所以线性无关,可推出 A T A A^\mathrm{T}A ATA可逆。
那么 b \boldsymbol{b} b投影到 M M M中的向量 a = A x = A ( A T A ) − 1 A T b \boldsymbol{a}=A\boldsymbol{x}=A(A^\mathrm{T}A)^{-1}A^\mathrm{T}\boldsymbol{b} a=Ax=A(ATA)1ATb可得到投影矩阵 P = A ( A T A ) − 1 A T P=A(A^\mathrm{T}A)^{-1}A^\mathrm{T} P=A(ATA)1AT
这里的 A A A为投影超平面中基向量(列向量)的组合。
可以轻松得到投影矩阵的一些性质:
(1)对称性: P = P T P=P^\mathrm{T} P=PT
(2)幂等性: P 2 = P P^2=P P2=P
(3)秩: r a n k ( P ) = m rank(P)=m rank(P)=m

投影矩阵的形式很容易联想到线性回归的解, w = ( X T X ) − 1 X T y \boldsymbol{w}=(X^\mathrm{T}X)^{-1}X^\mathrm{T}\boldsymbol y w=(XTX)1XTy y ^ = X w = X ( X T X ) − 1 X T y \boldsymbol{\hat{y}}=X\boldsymbol{w}=X(X^\mathrm{T}X)^{-1}X^\mathrm{T}\boldsymbol y y^=Xw=X(XTX)1XTy也就是说线性回归求解的过程就是输出向量投影到输入向量所张成的超平面的过程

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值