【文献学习】矩阵投影

参考资料:张贤达.矩阵分析与应用[M].清华大学出版社,2004.

投影

投影定理:令H是向量空间,而M是H内的n维子空间。若对于H中的向量 x \boldsymbol{x} x,在子空间M内有一个向量 x ^ \hat{\boldsymbol{x}} x^,使得 x − x ^ \boldsymbol{x}-\hat{\boldsymbol{x}} xx^与M中的每一个向量 y \boldsymbol{y} y都满足正交条件,即
< x − x ^ , y > = 0 ∀ y ∈ M <\boldsymbol{x}-\hat{\boldsymbol{x}},\boldsymbol{y}>=0\qquad \forall\boldsymbol{y}\in M <xx^,y>=0yM
则不等式 ∣ ∣ x − x ^ ∣ ∣ ≤ ∣ ∣ x − y ∣ ∣ ||\boldsymbol{x}-\hat{\boldsymbol{x}}||\leq||\boldsymbol{x}-\boldsymbol{y}|| xx^xy对于所有向量 ∀ y ∈ M \forall\boldsymbol{y}\in M yM成立,并且等号仅当 y = x ^ \boldsymbol{y}=\hat{\boldsymbol{x}} y=x^时成立。
此定理表明,当M是有限维的子空间时,向量 x \boldsymbol{x} x到该子空间的投影 x ^ \hat{\boldsymbol{x}} x^唯一存在。类似地,向量 x \boldsymbol{x} x到子空间M的正交补 M ⊥ M^\bot M上的投影则称为正交投影
x \boldsymbol{x} x到子空间M上的投影 x ^ \hat{\boldsymbol{x}} x^常用数学符号缩写为
x ^ = P M x x ^ ∈ M \hat{\boldsymbol{x}}=\boldsymbol{P}_M\boldsymbol{x}\qquad\hat{\boldsymbol{x}}\in M x^=PMxx^M
其中, P M \boldsymbol{P}_M PM代表到闭子空间M上的投影映射,称投影算子
M ⊥ M^\bot M表示子空间M的正交补。投影 P M x \boldsymbol{P}_M\boldsymbol{x} PMx具有以下性质:
(1) P M ( α x + β y ) = α P M x + β P M y , x , y ∈ H ; α , β ∈ C \boldsymbol{P}_M(\alpha\boldsymbol{x}+\beta\boldsymbol{y})=\alpha\boldsymbol{P}_M\boldsymbol{x}+\beta\boldsymbol{P}_M\boldsymbol{y},\quad \boldsymbol{x},\boldsymbol{y}\in H;\alpha,\beta\in C PM(αx+βy)=αPMx+βPMy,x,yH;α,β

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值