向量到超平面子空间投影

二维空间投影

给定两个向量a和b
b在a方向上的分量是xa,x就是b在a上的投影长度,此时可以构筑一个与a垂直的向量,即b-xa
因为b-xa和a垂直,所以 a T ( b − x a ) = 0 → x = a T b a T a a^T(b-xa)=0 \rightarrow x=\frac{a^Tb}{a^Ta} aT(bxa)=0x=aTaaTb

b在a上的投影是 a x = a a T b a T a = a a T a T a b ax=a\frac{a^Tb}{a^Ta}=\frac{aa^T}{a^Ta}b ax=aaTaaTb=aTaaaTb
所以a向量的投影矩阵P是 a a T a T a \frac{aa^T}{a^Ta} aTaaaT,它乘以其他向量就相当于把其他向量投影到a上

P的列空间就是a向量方向的直线,因为Pb是投影到a上的分量,从列空间角度看就是Pb就是P列空间上的成员

P矩阵满足两个特点
P T = P P^T=P PT=P
P 2 = P P^2=P P2=P,因为两次投影和一次投影的结果是一样的


超维空间投影

给定一组超平面的基向量,它们按列堆叠得到A,这个超平面就是A的列空间

p = A x ^ p=A\hat{x} p=Ax^ 意味着p是A列空间上的向量,假设它是b的在A列空间投影
那么 b − A x ^ b-A\hat{x} bAx^是b在垂直于A列空间上的分量
因为垂直所以有
a i T ( b − A x ^ ) = 0 a_i^T(b-A\hat{x})=0 aiT(bAx^)=0 A T ( b − A x ^ ) = 0 → A T A x ^ = A T b → x ^ = ( A T A ) − 1 A T b A^T(b-A\hat{x})=0 \rightarrow A^TA\hat{x}=A^Tb \rightarrow \hat{x}=(A^TA)^{-1}A^Tb AT(bAx^)=0ATAx^=ATbx^=(ATA)1ATb
所以b在超平面的投影 p = A ( A T A ) − 1 A T b p=A(A^TA)^{-1}A^Tb p=A(ATA)1ATb

因此A列空间所表示超平面的投影矩阵P是 A ( A T A ) − 1 A T A(A^TA)^{-1}A^T A(ATA)1AT在二维平面他就是 a a T a T a \frac{aa^T}{a^Ta} aTaaaT

这个投影矩阵也满足之前提到的两个特点

顺便说一下他也可以求Ax=b的近似解,当Ax=b无解时,把b投影到A的列空间,那么就可以求近似解了,解 x x x就是就是上面那个 x ^ \hat{x} x^

证明A列独立时, A T A A^TA ATA可逆

假设 A T A x = 0 A^TAx=0 ATAx=0
那么 X T A T A x = 0 → ( A x ) T A x = 0 → A x = 0 X^TA^TAx=0 \rightarrow (Ax)^TAx=0 \rightarrow Ax=0 XTATAx=0(Ax)TAx=0Ax=0
因为A列独立,零空间只有0
所以 A x = 0 Ax=0 Ax=0只有零解满足条件
这也就是说 A T A x = 0 A^TAx=0 ATAx=0也只有零解才满足条件
所以 A T A A^TA ATA也是列独立的,同时他又是方阵,所以这个矩阵就是满秩的,满秩也就意味着可逆

  • 10
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值