中国太阳能面板空间分布数据集(2000-2022)
北京师范大学李晓兵教授团队发布中国太阳能面板空间分布矢量数据,为实现双碳目标进展提供重要依据!
数据介绍
及时准确地监测太阳能电站的时空分布特征,对于中国可再生能源产业布局优化和实现双碳目标至关重要。研究团队基于Google Earth Engine平台,通过分层采样和分区建模相结合的方法,利用随机森林算法解译生成了2000-2022年中国太阳能面板分布数据集。该数据集以Landsat影像为数据源,构建的随机森林模型精度较高(F1-score>0.92),数据集目视验证精度较高(F1-score>0.87),解译数据集的光伏分布细节与Landsat真彩色影像具有很好地一致性。该数据集能够有效弥补相关研究和实践的空白,有助于刻画我国2000年以来光伏产业发展的时空轨迹,可为相关研究和行业管理决策提供重要数据基础。需要说明,由于中国区域范围大,难以拼接满足解译要求的逐年Landsat影像,因此,每三年生成一期数据(2001、2004、2007、2010、2013、2016、2019、2022),由于在2007年以前的影像中未识别到太阳能面板,因此实体数据包括2007年、2010年、2013年、2016年、2019年、2022年6期。
文件命名和使用方法
文件命名:数据以shp格式存储,文件的名称为“SPyy.shp”,其中SP代表太阳能面板(solar panel),yy代表年,比如SP2022.shp表示该文件反映我国2022年太阳能面板的分布情况。数据读取方式:该文件可用ArcGIS读取并进行处理。
数据加工方法:
本研究采用基于像素的随机森林(RF)算法[35]在GEE平台[36]上绘制了2000年至2022年中国的SP ,并分析了其空间分布格局和变化。SP提取的工作流程可分为三个部分(见图3):1)获取样本数据;2)构建RF分类器并提取SP;3)对提取结果进行后处理。下面对具体过程进行详细说明。
数据格式:SHP
数据容量:38.22MB
数据作者:
姓名: 吕鑫
单位: 北京师范大学
姓名: 李晓兵
单位: 北京师范大学
姓名: 魏海硕
单位: 北京师范大学
姓名: 吴俊旭
单位: 北京师范大学
姓名: 党东良
单位: 北京师范大学
姓名: 张辰昊
单位: 北京师范大学