Pandas.Dataframe使用小结

上网查资料后发现做数据挖掘目前比较常用的就是R和Python,之前用过R所以现在想尝试使用Python。


Dataframe是非常好用的数据结构,可以把数据按表格的方式存取,但是在使用的过程中真的遇到很多麻烦。下面是一些使用心得

1. Dataframe的赋值

test_data.ix[~pd.isnull(test_data['col']),'label'] = 1
test_data['label'][~pd.isnull(test_data['col'])] = 1

两种都可以赋值,但是下面那种应该是不对的,会有Warning。


在对行进行赋值时,一定要保证index是一样的。

假设有A、B两个Dataframe并且A、B有相同的结构,要把B的一部分赋值给A,那要两个部分有着相同的index才可以正确赋值,否则会有NaN。


1 2 3
4 5 6
7 8 9
*10 20 30
40 50 60
70 80 90
=10 40 90
160 250 360
490 640 810
这样的计算也是可以通过Dataframe来计算的,同样的,两个Dataframe要有相同的Indexer。


总的来说,在Dataframe里面,indexer非常重要,是各种赋值、计算能不能正确进行的关键。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值