论文笔记:《FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation》

本文介绍了FoldingNet,一种针对点云的自动编码器,通过深度网格变形来处理不规则点云数据。FoldingNet利用折叠操作将2D网格变形,以重建3D点云,解决了传统CNN对点云处理的难题。实验表明,FoldingNet在点云分类和重建任务上表现出色,且其解码器的折叠操作在有限的参数下实现了高效重建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.介绍

三维点云处理通常被认为比二维图像更具挑战性,这主要是因为点云样本存在于不规则的结构上,而二维图像样本(像素)依赖于图像平面上具有规则间距的2D网格。点云几何通常由一组稀疏的三维点表示。这种数据格式使得传统的深度学习框架难以应用。例如:对于每个样本,传统的卷积神经网络(CNN)要求相邻样本出现在一定的空间方向和距离上,以便于卷积。点云通常不遵循这样的约束。之前的方法大都是将三维空间划分为规则体素和将二维CNN扩展到体素,基于体素的网络的主要问题是随着空间分辨率的提高,神经网络规模的快速增长,自从pointnet出来之后呢,大家都开始直接对三维点云进行处理啦!

这篇文章主要提出了一种称为FoldingNet的自动编码器(AE)。自动编码器中瓶颈层的输出称为codeword,可用作输入点云的高维嵌入。解码器部分是基于折叠操作把2D网格变形到点云的表面。

这主要是依据任何三维物体表面都可以通过切割、压缩和拉伸等操作转换成二维平面。逆过程是通过一定的折叠操作将二维点样本粘合回物体表面,并将其初始化为二维网格样本。这个逆过程也就是本文进行重建的主要操作。

然后具体的看一下折叠操作,就是下面表1中展示的。它主要是进行了两次折叠,在解码器中直接引入这样一个隐式2D网格约束,解决了点云不规则结构的问题,文章也提到了只要有适当的codeword,折叠操作就可以构建任意曲面。

第一列包含来自ShapeNet数据集的原始点云样本。第二列说明在解码过程中要折叠的2D网格点。第三列包含一次折叠操作后的输出。第四列包含两个折叠操作后的输出。这个输出也是重构的点云。

虽然说重建的结果很好,但是我觉得折叠的操作就是解码器部分还是比较简单的,后面也会具体介绍,所以我觉得主要是前面这个提特征的网络特别好,才使得后面的重建结果好。

总的来说,文章的贡献点就是

  •   训练的是一种端到端的深层自动编码器,它直接消耗无序的点云。
  • ·提出了一种新的解码操作-折叠,理论上证明了它在点云重建中是通用的,同时为重构提供命令。
  • ·在主要数据集上的实验表明,与其他无监督方法相比,折叠方法可以获得更高的分类精度。

2.点云上的FoldingNet自动编码器

自动编码器的结构如图1所示。编码器的输入是n乘3矩阵.矩阵的每一行由三维位置(x,y,z

引用: Auto-encoder是一种深度学习模型,用于将输入数据编码为低维表示,并尽可能地重构原始数据作为输出。在降维方面,PCA会将不同类别的数据混合在一起,而auto-encoder则可以将它们分开。除了降维之外,auto-encoder还有其他用途,比如图片搜索。 引用: 训练一个auto-encoder的过程通常会先固定一些权重参数,然后逐层训练多个自编码器,每个自编码器的输入和输出维度逐渐逼近目标维度。最后,可以使用反向传播来微调网络参数。现在也可以不进行预训练,直接训练auto-encoder。此外,auto-encoder还可以与卷积神经网络(CNN)一起使用。 引用: 特征区分技术是指在auto-encoder中,通过编码器获取的Embedding向量中,可以区分出不同输入数据的特征信息。比如,对于语音输入,可以分别提取出语音内容和说话者的特征。这就是Feature Disentangle的目标。 根据李宏毅老师的讲解,auto-encoder是一种用于降维、重构和特征提取的深度学习模型。它可以将输入数据编码为低维表示,并尽可能地重构原始数据作为输出。除了降维之外,auto-encoder还可以用于图片搜索等任务。训练auto-encoder时,可以使用预训练和微调的方法,也可以直接进行训练。此外,auto-encoder还可以与卷积神经网络(CNN)结合使用。特征区分技术可以用于auto-encoder中,用于提取不同输入数据的特征信息。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值