每天五分钟机器学习:梯度下降求解正则化的逻辑回归模型的最优解

本文介绍了如何使用梯度下降解决正则化逻辑回归的过拟合问题。通过引入正则项,调整模型参数,即使在多项式复杂的情况下也能找到合理分界线,实现对样本的有效分类。
摘要由CSDN通过智能技术生成

本文重点

本节课程我们将学习如何使用梯度下降算法求解正则化的逻辑回归模型的最优解。

逻辑回归的过拟合问题

 

如图所示,情况三是过拟合的情况,就是因为模型函数中有过多的多项式,所以我们应该使用正则化的方法来对一些多项式进行惩罚。

逻辑回归的代价函数

没有正则项的逻辑回归的代价函数

 

带有正则项的逻辑回归的代价函数

 

即使使用图一中情况三的多项式来拟合,当我们使用正则化方法之后,约束这些多项式的参数θ使其取值很小,此时模型仍然可以学习出一条合理的分界线,分开正负样本就像图一中情况二的一样。要最小化该代价函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值