每天五分钟机器学习:L1正则化和L2正则化有什么区别?

本文介绍了L1正则化和L2正则化的概念及其区别。L1正则化产生稀疏权重矩阵,常与拉普拉斯分布相关,而L2正则化假设权重分布为高斯分布,导致参数值较小但不为零。正则化通过最大后验概率估计,结合先验分布来优化模型参数。
摘要由CSDN通过智能技术生成

本文重点

正则化包含L1正则化和L2正则化,本文将介绍一下这两个正则化有什么不同?

正则化

L1正则化

L1正则化目的是减少参数的绝对值总和,定义为:

 

L2正则化

L2正则化的目的是减少参数平方的总和,定义为:

 

二者的区别?

1、L1正则化会使得某一维的权重为0,产生稀疏权重矩阵。L2正则化的最优的参数值很小概率会出现在坐标轴上,因此每一维的参数都不会是0。

2、L1正则化假设权重w的先验分布为拉普拉斯分布,由最大后验概率估计导出。L2正则化假设权重w的先验分布为高斯分布,由最大后验概率估计导出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值