本文重点
在人工智能领域,计算图(Computation Graph)是一个至关重要的概念,尤其在深度学习和神经网络训练中。本文对此进行学习。
计算图的定义
计算图是一种用于描述数学计算的图形模型,常用于神经网络的前向传播和反向传播算法中。在计算图中,节点代表数学运算(如加法、乘法、卷积等),边代表运算结果之间的依赖关系,形成了一张有向无环图。这个图可以通过一系列的节点之间的计算和数据传递来完成整个计算过程。简而言之,计算图就是人工智能任务中模型定义和参数求解过程的图形化表示。
例子
一个神经网络的计算,都是按照前向传播和反向传播组织的,首先我们进行前向传播,计算出神经网络的输出,然后通过输出和样本标签来计算出损失,紧接着进行一个反向传播,用来计算对应的梯度或者是导数。
计算图可以解释为什么我们使用这种方式组织这些计算过程。我们下面将举一个例子来说明计算图是什么?
现在有一个J(x,y,z)=(x+y)*z
我们要来计算函数J,J是由三个变量x,y,z组成的函数,这个函数是(x+y)*z。要想计算这个函数需要两个步骤:
首先计算x+y
然后计算(x+y)*z
这就是我们要计算J的全过程,我们可以把这三个步骤化成如下的计算图。</