每天五分钟深度学习:计算图

本文介绍了计算图在深度学习中的重要性,详细阐述了计算图的定义,通过实例展示了如何利用计算图进行前向传播和反向传播计算,包括sigmoid函数的计算图,并解释了反向传播中链式求导的过程。
摘要由CSDN通过智能技术生成

本文重点

在人工智能领域,计算图(Computation Graph)是一个至关重要的概念,尤其在深度学习和神经网络训练中。本文对此进行学习。

计算图的定义

计算图是一种用于描述数学计算的图形模型,常用于神经网络的前向传播和反向传播算法中。在计算图中,节点代表数学运算(如加法、乘法、卷积等),边代表运算结果之间的依赖关系,形成了一张有向无环图。这个图可以通过一系列的节点之间的计算和数据传递来完成整个计算过程。简而言之,计算图就是人工智能任务中模型定义和参数求解过程的图形化表示。

例子

一个神经网络的计算,都是按照前向传播和反向传播组织的,首先我们进行前向传播,计算出神经网络的输出,然后通过输出和样本标签来计算出损失,紧接着进行一个反向传播,用来计算对应的梯度或者是导数。

计算图可以解释为什么我们使用这种方式组织这些计算过程。我们下面将举一个例子来说明计算图是什么?

现在有一个J(x,y,z)=(x+y)*z

我们要来计算函数J,J是由三个变量x,y,z组成的函数,这个函数是(x+y)*z。要想计算这个函数需要两个步骤:

首先计算x+y

然后计算(x+y)*z

这就是我们要计算J的全过程,我们可以把这三个步骤化成如下的计算图。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值