人工智能之数学基础:随机向量的期望和随机向量函数的期望

本文重点

在前面的课程中,我们介绍了随机变量的数学期望,本文我们将学习随机向量的数学期望。随机向量的数学期望和随机变量的数学期望的计算方式大致是相同的。

随机向量的数学期望的直观理解

随机向量是一个向量,随机向量的期望也是一个向量。

随机向量的每一个元素都是一个随机变量,只需要计算出每一个随机变量的期望,然后组成向量就可以得到随机向量的期望了。

公式

现在有一个随机向量X=[X1,X2],对于每一个随机变量X1、X2分别计算期望E[X1]、E[X2],就可以得到随机向量X的期望了E[X]=[E[X1],E[X2]]

对于离散型随机向量,分量Xi的数学期望为:

针对于离散型进行举例,现在随机向量x的联合概率质量函数如下所示:

E[X1]=1*0.1+1*0+1*0.1+1*0.1+2*0.15+2*0.25+2*0.05+2*0+3*0.1+3*0.15+3*0+3*0=0.1+0.1+0.1+0.3+0

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能_AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值