本文为 LlamaIndex 系列的第二篇。前文介绍了 LlamaIndex 的核心功能、基础概念、安装步骤、应用示例。本文详细介绍如何使用 LlamaIndex 导入数据库的数据,搭建私有知识库(附 python 代码示例)。对于企业,大部分的数据存储在数据库,LlamaIndex 支持对数据库数据的导入、转换和向量索引处理,利用大语言模型(LLMs)进行智能查询和分析,高效搭建私有知识库。
基于私有数据库数据的智能问答流程
使用 LlamaIndex,接入数据库数据,搭建私有知识库,实现智能问答应用的流程如下:
初始化流程:
- 使用 LlamaIndex 的数据库读取器,加载数据库数据。
- 使用嵌入模型,将数据转换成向量形式。
- 数据向量被存储到向量索引中,以便后续检索。
问答流程:
- 用户提出问题。
- 查询引擎将用户问题传递给嵌入模型,生成向量。
- 检索器根据用户问题(向量形式),从向量索引中找到最相关的 top N 片段。
- 查询引擎将 top N 片段和用户问题传递给语言模型。
- 语言模型生成回答并返回给用户。
开发准备(安装)
安装 python 包
pip install llama-index -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install llama-index-llms-deepseek -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install llama-index-readers-database -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install llama_index.embeddings.huggingface -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install psycopg2-binary -i https://pypi.tuna.tsinghua.edu.cn/simple
嵌入模型
使用 huggingface 上的 BAAI 的嵌入模型。以下两个是轻量级的嵌入模型:
- BAAI/bge-small-en-v1.5 : https://huggingface.co/BAAI/bge-small-en-v1.5
- BAAI/bge-small-zh-v1.5 : https://huggingface.co/BAAI/bge-small-zh-v1.5
由于科学上网的原因,上面的两个嵌入模型可能不好下载。海哥已经从 huggingface 下载好了。关注我,后台发送消息:“嵌入模型”,获取下载链接。
示例数据集
从 kaggle 下载中国电影数据:https://www.kaggle.com/datasets/pwang001/movie-recommender
在 pg 数据库建表,并导入数据集。
CREATE TABLE public.chinese_movie_ratings (
movie_type varchar(50) NULL, -- 电影类型
main_actors varchar(100) NULL, -- 主演
region varchar(50) NULL, -- 地区
director varchar(50) NULL, -- 导演
features varchar(100) NULL, -- 特色
rating numeric(3, 1) NULL, -- 评分
movie_name varchar(100) NOT NULL, -- 电影名
CONSTRAINT chinese_movie_ratings_pk PRIMARY KEY (movie_name)
);
COMMENT ON TABLE public.chinese_movie_ratings IS '中国电影评分表';
-- Column comments
COMMENT ON COLUMN public.chinese_movie_ratings.movie_type IS '电影类型';
COMMENT ON COLUMN public.chinese_movie_ratings.main_actors IS '主演';
COMMENT ON COLUMN public.chinese_movie_ratings.region IS '地区';
COMMENT ON COLUMN public.chinese_movie_ratings.director IS '导演';
COMMENT ON COLUMN public.chinese_movie_ratings.features IS '特色';
COMMENT ON COLUMN public.chinese_movie_ratings.rating IS '评分';
COMMENT ON COLUMN public.chinese_movie_ratings.movie_name IS '电影名';
导入数据后,对数据进行查看:
代码示例
- 设置使用的嵌入模型和语言模型
嵌入模型使用 BAAI/bge-small-zh-v1.5(中文);语言模型使用 DeepSeek 的 deepseek-chat。
import os
from dotenv import load_dotenv
from llama_index.core import VectorStoreIndex, Settings
from llama_index.readers.database import DatabaseReader
from llama_index.llms.deepseek import DeepSeek
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sqlalchemy import create_engine
api_key = os.environ["DEEPSEEK_API_KEY"]
embed_model_path = 'D:\\DevelopTools\\huggingface_model\\baai\\bge-small-zh-v1.5'
llm = DeepSeek(model="deepseek-chat", api_key=api_key)
Settings.llm = llm # 绑定语言模型(用于生成回答)
# 绑定嵌入模型(用于生成向量)
Settings.embed_model = HuggingFaceEmbedding(
model_name=embed_model_path,
cache_folder=embed_model_path
)
- 设置数据库的连接
load_dotenv()
# 数据库连接配置
host = os.getenv("PG_HOST")
port = os.getenv("PG_PORT")
database = os.getenv("PG_DATABASE")
user = os.getenv("PG_USER")
password = os.getenv("PG_PASSWORD")
connection_string = f"postgresql://{user}:{password}@{host}:{port}/{database}"
engine = create_engine(connection_string)
# 初始化数据库读取器
db_reader = DatabaseReader(
engine=engine, # 使用 SQLAlchemy 引擎
)
2. 读取数据并初始化为向量索引,创建查询引擎,用户提问并得到模型的回答(4 行核心代码)
sql_query = '''
SELECT movie_type,
main_actors,
region,
director,
features,
rating,
movie_name
FROM public.chinese_movie_ratings;
'''
user_input = '我不是药神的评分是多少?'
# 将数据转换成 documents 对象
documents = db_reader.load_data(query=sql_query)
# 创建向量索引
index = VectorStoreIndex.from_documents(documents)
# 基于索引,创建查询引擎
query_engine = index.as_query_engine()
# 用户提问并获取回答
response = query_engine.query(user_input)
print(response)
可实现多轮对话交互,根据对知识库的检索,模型回答用户的问题:
print("知识库已准备就绪!您现在可以询问问题。")
print("输入 'exit' 退出。")
while True:
user_input = input("您的问题: ")
if user_input.lower() == "exit":
break
try:
response = query_engine.query(user_input)
print("助手回答:", response)
except Exception as e:
print(f"处理查询时出错: {e}")
问答示例(模型的回答与数据库数据一致)
正在创建向量索引...
索引创建完成...
《我不是药神》的评分是8.9分。
知识库已准备就绪!您现在可以询问问题。
输入 'exit' 退出。
您的问题: 我不是药神的主演是谁?
助手回答: 徐峥、王传君、周一围、谭卓和章宇。
您的问题: 介绍一下鬼子来了,评分是多少
助手回答: 《鬼子来了》是一部中国大陆的剧情片,由姜文执导并主演,其他主要演员包括香川照之、袁丁、姜宏波和丛志军。这部电影被归类为经典作品,评分为9.2分。
您的问题: 人在囧途和驴得水这两部电影,哪一部评分高?
助手回答: 《驴得水》的评分更高,达到了8.3分。
您的问题: exit
Process finished with exit code 0
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓