随着大模型(LLM)能力越来越强,RAG(Retrieval Augmented Generation,检索增强生成)技术成为增强大模型知识准确性的关键手段。
通过检索实时数据、外部文档,模型能回答更多基于事实的问题,降低“幻觉”概率。
而 LangChain 的 LangGraph 能将 LLM、RAG、工具调用(Tools)整合成一个智能 Agent 流程图,极大提升了问答系统的动态能力。
本文通过一个完整示例,展示如何用 LangChain 构建一个「RAG + Agent」的问答系统,代码可直接复用,帮助大家快速落地智能应用。
工程结构
llm_env.py # 初始化 LLM
rag_agent.py # 结合 RAG 与 Agent 的主逻辑
初始化 LLM
首先通过 llm_env.py 初始化一个 LLM 模型对象,供整个流程使用:
from langchain.chat_models import init_chat_model
llm = init_chat_model("gpt-4o-mini", model_provider="openai")
RAG + Agent 系统搭建
导入依赖
import os
import sys
import time
sys.path.append(os.getcwd())
from llm_set import llm_env
from langchain.embeddings import OpenAIEmbeddings
from langchain_postgres import PGVector
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import MessagesState, StateGraph
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, SystemMessage
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.graph import END
from langgraph.checkpoint.postgres import PostgresSaver
初始化 LLM 与 Embedding
llm = llm_env.llm
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
初始化向量数据库
vector_store = PGVector(
embeddings=embeddings,
collection_name="my_rag_agent_docs",
connection="postgresql+psycopg2://postgres:123456@localhost:5433/langchainvector",
)
加载网页文档
url = "https://www.cnblogs.com/chenyishi/p/18926783"
loader = WebBaseLoader(
web_paths=(url,),
)
docs = loader.load()
for doc in docs:
doc.metadata["source"] = url
文本分割 & 入库
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
all_splits = text_splitter.split_documents(docs)
existing = vector_store.similarity_search(url, k=1, filter={"source": url})
if not existing:
_ = vector_store.add_documents(documents=all_splits)
print("文档向量化完成")
定义 RAG 检索工具
通过 @tool 装饰器,定义一个文档检索工具,供 Agent 动态调用:
@tool(response_format="content_and_artifact")
def retrieve(query: str) -> tuple[str, dict]:
"""Retrieve relevant documents from the vector store."""
retrieved_docs = vector_store.similarity_search(query, k=2)
if not retrieved_docs:
return "No relevant documents found.", {}
return "\n\n".join(
(f"Source: {doc.metadata}\n" f"Content: {doc.page_content}")
for doc in retrieved_docs
), retrieved_docs
定义 Agent Graph 节点
LLM 调用工具节点
def query_or_respond(state: MessagesState):
llm_with_tools = llm.bind_tools([retrieve])
response = llm_with_tools.invoke(state["messages"])
return {"messages": [response]}
工具节点
tools = ToolNode([retrieve])
生成响应节点
def generate(state: MessagesState):
recent_tool_messages = []
for message in reversed(state["messages"]):
if message.type == "tool":
recent_tool_messages.append(message)
else:
break
tool_messages = recent_tool_messages[::-1]
system_message_content = "\n\n".join(doc.content for doc in tool_messages)
conversation_messages = [
message
for message in state["messages"]
if message.type in ("human", "system")
or (message.type == "ai" and not message.tool_calls)
]
prompt = [SystemMessage(system_message_content)] + conversation_messages
response = llm.invoke(prompt)
return {"messages": [response]}
组装 Agent 流程图
graph_builder = StateGraph(MessagesState)
graph_builder.add_node(query_or_respond)
graph_builder.add_node(tools)
graph_builder.add_node(generate)
graph_builder.set_entry_point("query_or_respond")
graph_builder.add_conditional_edges(
"query_or_respond",
tools_condition,
path_map={END: END, "tools": "tools"},
)
graph_builder.add_edge("tools", "generate")
graph_builder.add_edge("generate", END)
启用 Checkpoint & 运行流程
数据库存储器
DB_URI = "postgresql://postgres:123456@localhost:5433/langchaindemo?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
checkpointer.setup()
graph = graph_builder.compile(checkpointer=checkpointer)
启动交互循环
input_thread_id = input("输入thread_id:")
time_str = time.strftime("%Y%m%d", time.localtime())
config = {"configurable": {"thread_id": f"rag-{time_str}-demo-{input_thread_id}"}}
print("输入问题,输入 exit 退出。")
while True:
query = input("你: ")
if query.strip().lower() == "exit":
break
response = graph.invoke({"messages": [HumanMessage(content=query)]}, config=config)
print(response)
总结
本文完整展示了如何用 LangChain + LangGraph,结合:
LLM(大模型)
Embedding 检索(RAG)
Agent 动态调用工具
流程图编排
Checkpoint 存储
构建一个智能问答系统。通过将工具(RAG 检索)和 Agent 机制结合,可以让 LLM 在需要的时候 自主调用检索能力,有效增强对知识的引用能力,解决“幻觉”问题,具备很好的落地应用价值。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

三、LLM大模型系列视频教程

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

五、AI产品经理大模型教程

LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

980

被折叠的 条评论
为什么被折叠?



