1 虚拟阵列
- 虚拟阵列是一种技术,它通过特定的阵列结构模型、数学方法处理接收的信号源、或对阵列进行虚拟变换等手段,来扩展原阵列的孔径或增加阵元数目。这种技术主要用于提高阵列的角度分辨率和测向精度,同时也能提高阵元天线的利用效率和整个阵列的自由度。在现代高分辨率空间谱估计中,虚拟阵列技术可以有效地提高源信号的输出信噪比,增强阵列的鲁棒性,实现解相干。
- 例如,在MIMO雷达中,虚拟阵列可以通过多次发射和接收信号,构建一个满秩的接收数据协方差矩阵,使得期望信号的信息保存在信号子空间中,从而得到正确的估计结果。
- 虚拟孔径的目的是提高测角能力,因为是虚拟的,并不能提高信噪比,也就是提高雷达的检测能力,但是又不大幅增加成本。
- MIMO雷达的基本原理,文章第三节 Pirnciple of the MIMO Radarhttps://www.ti.com/lit/an/swra554a/swra554a.pdf?ts=1595300253323&ref_url=https%253A%252F%252Fwww.google.com.hk%252F
- 常规的阵列的角度分辨率由阵列孔径决定,因此如果我们要提高角度分辨率到2倍,那么我们需要2倍于原来阵列的长度。
- 发射间距是4d,TX1发射后接收的信号是 [0w1w2w3w] ,而TX2发射后接收的信号自然而然的了 [4w5w6w7w] 。
-
把发射分开,介绍了2种方式:
-
Time Division Multiplexing (TDM-MIMO),时分复用,分时发射,这样子区分波形,但是牺牲了时间。
-
BPM-MIMO,码分复用,设定正交的波形,保证其相互正交,然后在接收端解开发射,当然难点就是设计正交的波形了,如何防止波形互相干扰
-
三种虚拟阵列扩展方法:四阶累积量法、外推法、内插法。四阶累积量虚拟阵列扩展法能够抑制高斯噪声,将基阵扩展到二倍孔径。常规外推法在信噪比较低时性能较差。常规的内插法主要应用于阵型变换,不适用于线阵的孔径扩展。
-
虚拟阵列技术研究起始于上世纪90年代中期,其初衷是为了实现高精度波达方向(Directional Of Arrival,DOA)估计和提高阵元的利用效率与自由度.近几年阵列虚拟扩展技术的研究主要集中在:1)通过直接对基阵进行虚拟扩展或内插,提高方位角度估计精度;2)通过对阵列中的子阵进行平移或虚拟扩展,达到既能够提高测向精度,又能够解相干和扩展阵列处理自由度的目的;3)通过虚拟阵列的内插和扩展提高阵列方向图空域滤波性能,如提高波束指向性,同时降低旁瓣和抑制栅瓣。
-
从阵列虚拟扩展方法可得,虚拟扩展阵列的信号数据其实和实际阵列的接收数据模型相同,而两者的主要区别是阵列噪声.也就是说,当阵列虚拟扩展时,扩展阵元上的噪声是由基阵噪声生成的.由于扩展阵列的波束方向图具有更窄的主瓣和更低的旁瓣,因而,虚拟扩展阵列对空间噪声的抑制更强于基阵.因此,由综合阵列虚拟扩展前后信号和噪声的变化,可以得出阵列虚拟扩展能够有效地提高源信号的输出信噪比。
-
MIMO雷达具有多发多收天线,一发八收等同于两发四收天线,这为MIMO雷达提供了经济有效的方式来提高雷达的分辨率,主要是天线体积的减小。
-
角度分辨率增加一倍,接收天线数量就会增加一倍,如果使用MIMO雷达,只增加一个发射天线就可以取代多出的一倍接收天线。
-
2 阵列的孔径
- 阵列的孔径指的是天线阵列的有效辐射或感应区域,也就是天线在特定方向上的有效性能。它反映了天线的方向性和辐射特性。在技术应用中,孔径越大,通常意味着天线的角度分辨能力越强。
- 例如,在雷达系统中,孔径较大的天线能够提供更细致的角度分辨率,从而更精确地定位和追踪目标。
-
3 阵列的自由度
- 阵列的自由度通常指的是在一定的约束条件下,阵列能够独立变化的参数数量。在阵列信号处理中,自由度可以理解为系统能够提供的独立测量数量,这与阵列的设计、配置和信号处理算法有关。
- 例如,在MIMO(多输入多输出)系统中,自由度可以表示为发射天线数和接收天线数的乘积,这反映了系统能够处理的独立信号流的数量。自由度越高,系统的性能通常越好,因为它能够提供更多的信息来进行信号的检测和估计。
-
4 高分辨率空间谱估计
- 高分辨率空间谱估计是一种信号处理技术,它用于提高信号源方向估计的分辨率。这种技术能够识别和区分出在空间中非常接近的多个信号源的方向。高分辨率空间谱估计技术通过利用信号的空间分布特性,可以在一个波束宽度内分辨出不同来向的信号,这超越了传统方法如傅立叶变换的限制。
- 在阵列信号处理领域,高分辨率空间谱估计技术尤为重要,因为它可以准确地估计信号的空域参数或信源位置,这对于雷达、通信、声纳等许多应用领域至关重要。例如,MUSIC算法和ESPRIT算法就是两种著名的高分辨率空间谱估计方法,它们基于信号子空间与噪声子空间的正交性或信号子空间的旋转不变性来估计信号的方向。
- 这些高分辨率技术通常需要对接收到的信号数据的协方差矩阵进行特征值分解,以区分信号子空间和噪声子空间。信号子空间包含了有关信号源方向的信息,而噪声子空间则包含噪声和干扰。通过这种分解,可以更准确地估计信号源的方向,即使信号源非常接近也能区分开来。这些方法在提供高分辨率的同时,也避免了传统方法中的谱搜索过程,从而加快了波达方向估计的速度。
-
5 波束宽度
- 波束宽度是指在天线辐射方向中,通常都有一个主瓣,其余的为副瓣。主瓣两半功率点间的夹角定义为天线方向图的波瓣宽度,也就是波束宽度。这个宽度是衡量天线方向图胖瘦的指标,通常定义为主瓣功率下降到波束中央1/2功率处的宽度。
- 波束宽度与天线增益有关,一般来说,天线增益越大,波束就越窄,探测角分辨率就越高。波束宽度分为水平波束宽度和垂直波束宽度,分别定义为:
- 水平波束宽度:在水平方向上,在最大辐射方向两侧,辐射功率下降3dB的两个方向的夹角。
- 垂直波束宽度:在垂直方向上,在最大辐射方向两侧,辐射功率下降3dB的两个方向的夹角。
-
5 旋转不变性
- 旋转不变性,或称为旋转对称性,在数学和物理学中,是指一个系统或函数在旋转操作下保持不变的性质。具体来说,如果一个函数或物理量在坐标旋转后仍然保持其数值不变,那么它就具有旋转不变性。这意味着无论观察者从哪个角度观察该系统或函数,其观察到的物理现象或数学表达都是相同的。
- 例如,在图像处理中,旋转不变性意味着无论图像如何旋转,图像中的特征可以被一致地识别。这在模式识别和计算机视觉中非常重要,因为它允许算法识别出在不同方向上的相同对象。在信号处理中,旋转不变性也是一个重要概念,它允许系统在信号源方向变化时,仍能准确地估计和处理信号。
-
6 阵列的鲁棒性
- 阵列的鲁棒性,或称稳健性,是指阵列在面对各种扰动或不确定性因素时,如模型误差、噪声干扰、环境变化等,仍能保持其预期功能和性能的能力。在控制系统中,鲁棒性特别重要,因为它确保了系统在实际操作中的可靠性和稳定性,即使在不理想的条件下也能正常工作。
- 例如,在信号处理中,一个具有高鲁棒性的阵列能够在信号受到干扰或部分阵元失效时,仍然准确地进行信号定位和识别。在设计阵列和控制系统时,提高鲁棒性通常是一个重要的考虑因素。
-
7 解相干
- 解相干,或称为去相干化,是信号处理中的一个技术,旨在减少或消除信号源之间的相干性。相干信源会导致它们的协方差矩阵秩亏损,即信号协方差矩阵的秩不再等于信源个数。这会影响如方向估计等信号处理任务的准确性。解相干的目的是通过某些处理手段,如空间平滑技术,重新构造一个新的协方差矩阵,使其秩恢复成信源个数,从而提高信号处理的性能。
- 例如,在使用均匀线性阵列(ULA)接收信号时,如果信号源之间存在相干,可以通过将阵列分成多个子阵列,并对每个子阵列的信号进行处理,来降低信号源之间的相干性。这样,每个子阵列的协方差矩阵将具有更高的秩,有助于更准确地估计信号的方向。
-
8 空间平滑技术
- 空间平滑技术是一种用于解决相干信号源方向估计问题的信号处理方法。当多个信号源在空间中相互干扰时,它们的信号会变得相干,导致信号处理算法如MUSIC算法难以区分这些信号源。空间平滑技术通过将接收阵列分成多个重叠的子阵列,并对每个子阵列的信号进行处理,来降低信号源之间的相干性。这样,每个子阵列的信号协方差矩阵将具有更高的秩,有助于更准确地估计信号的方向。
- 具体来说,空间平滑技术首先将由多个接收天线构成的线性天线阵列划分为多个相互重叠的子阵列。每个子阵列包含的天线数量少于原始阵列,但是子阵列的数量足以覆盖整个接收阵列。然后,对每个子阵列的接收信号计算协方差矩阵,并对这些协方差矩阵进行平均处理,以形成一个新的协方差矩阵。这个新的协方差矩阵能够反映非相干信号源的特性,使得MUSIC等算法能够有效地估计信号源的方向。
- 空间平滑技术在处理相干信号源时非常有效,尤其是在雷达、声纳和无线通信等领域的应用中,能够提高方向估计的准确性和分辨率。
-
9 协方差矩阵
- 协方差矩阵是一个表示多个随机变量之间协方差的方阵。在统计学和概率论中,协方差矩阵的每个元素代表两个随机变量之间的协方差。对于随机变量 ( X_1, X_2, …, X_n ),协方差矩阵 ( \Sigma ) 的一般形式如下:
- 其中,( \sigma^2(X_i) ) 是随机变量 ( X_i ) 的方差,而 ( \text{Cov}(X_i, X_j) ) 是随机变量 ( X_i ) 和 ( X_j ) 之间的协方差。协方差矩阵是对称的,因为 ( \text{Cov}(X_i, X_j) = \text{Cov}(X_j, X_i) )。协方差矩阵在多元统计分析中非常重要,它可以用来描述随机变量之间的线性关系。
-
10 信号子空间
- 信号子空间是信号处理中的一个概念,它指的是由接收到的数据协方差矩阵中与信号对应的特征向量张成的空间。在阵列信号处理中,信号子空间包含了从各个方向到达阵列的信号的信息,而与之正交的噪声子空间则主要包含噪声和干扰。当进行特征值分解(EVD)或奇异值分解(SVD)时,这两个子空间由对应的特征向量定义。信号子空间的概念在MUSIC算法等高分辨率方向估计方法中非常重要,因为它们利用信号子空间与噪声子空间的正交性来估计信号的方向。
- 例如,假设有一个接收模型可以表示为:r=Ax+n 其中,r 是接收信号,n 是噪声,x 是信源信号,A 是由阵列方向矢量组成的矩阵。通过对接收信号的自相关矩阵 Rr 进行特征值分解,可以得到信号子空间和噪声子空间。信号子空间由最大的几个特征值对应的特征向量张成,而噪声子空间由剩余的特征向量张成。这两个子空间是正交的,这个性质被用于信号方向的估计。
-
11 奇异值分解(SVD)
- 奇异值分解(SVD)是一种在线性代数中非常重要的矩阵分解方法。它可以将任何一个复数或实数矩阵分解为三个特定的矩阵乘积:一个左奇异向量矩阵、一个奇异值对角矩阵和一个右奇异向量矩阵的转置。数学上,对于一个 ( m \times n ) 的矩阵 ( A ),其奇异值分解可以表示为:
- A=UΣVT
- 其中:
- ( U ) 是一个 ( m \times m ) 的酉矩阵(即 ( U^U = UU^ = I ),其中 ( U^* ) 是 ( U ) 的共轭转置,( I ) 是单位矩阵)。
- ( \Sigma ) 是一个 ( m \times n ) 的对角矩阵,对角线上的元素是 ( A ) 的奇异值,且这些奇异值是非负的,并按降序排列。
- ( V ) 是一个 ( n \times n ) 的酉矩阵。
- 奇异值分解在许多领域都有应用,如信号处理、统计学、机器学习等。它可以用于数据降维、特征提取、矩阵近似等任务。
-
12 阵列结构模型
- 阵列信号处理中的阵列结构模型对于不同类型的阵列有着不同的应用场景。
- 均匀线阵 (ULA):
- ULA 是一种最常见的阵列结构,其中天线阵元等距离排列成一条直线。
- 阵元之间的间距决定了阵列的角度分辨率和波束宽度。
- ULA 的方向向量可以用复数表示,其中每个阵元的相位差与入射角有关。
- L 型阵:
- L 型阵列在 x 轴和 y 轴上都有 M 个阵元,阵元间距为 d。
- 可以将其视为两个均匀线阵的组合,用于二维角度估计。
- 均匀平面阵:
- 由 M × N 个阵元组成,等间距排列成正方形或矩形。
- 在 x 轴和 y 轴方向上都有均匀线阵,用于二维角度估计。
- 均匀圆阵:
- M 个阵元均匀分布在圆周上,形成一个圆。
- 适用于二维角度估计,例如雷达应用。
- 任意三维阵列:
- 由 M 个阵元在空间中任意分布,用于三维角度估计。
- 阵列的方向向量与阵元位置、入射角有关。
- 这些阵列结构模型在信号处理中具有不同的优势和应用,根据具体场景选择合适的阵列结构可以提高系统性能。