目录
1 虚拟阵列技术
虚拟阵列技术主要包括以下几种:
MIMO雷达的虚拟孔径技术:通过在接收端形成奈奎斯特虚拟阵列来提高阵列的有效孔径,从而提高测角能力。
虚拟阵列扩展技术:构造虚拟阵元位置处的信号或信息,扩展阵列孔径,提高角度分辨力。主要方法包括四阶累积量法、外推法、内插法。
MIMO系统中的虚拟阵列计算:虚拟阵列不是真实的天线阵列,而是描述天线阵列行为的数学等效对象,重要的环节是设计虚拟阵列中虚拟天线的布置。
这些技术在提高阵列的分辨能力和阵元利用效率方面发挥着重要作用。
1 解相干
解相干,或称退相干,是指量子系统由于与环境的相互作用而逐渐失去相干性的过程。在量子力学中,系统的相干性是指系统状态的波函数能够显示出明显的干涉效应。当系统与环境发生相互作用时,这种干涉效应会减弱,最终可能完全消失,这就是解相干。
解相干的数学意义在于,相干信源导致其协方差矩阵秩亏,即信号协方差矩阵的秩不再等于信源个数。为了恢复信源个数,需要重新构造一个新的矩阵,使得其秩恢复成信源个数。这个过程可以通过空间平滑等技术实现。
在量子计算和量子信息领域,解相干是一个重要的问题,因为它会影响量子比特的稳定性和量子信息的传输。因此,研究如何控制和减少解相干对于这些领域的发展至关重要。
2 阵列自由度
阵列自由度是指在阵列信号处理中,阵列能够提供的独立信息数量。在MIMO通信和雷达系统中,自由度通常与系统的发送和接收天线数量有关。例如,在MIMO通信中,如果发射机有( M )个天线,接收机有( N )个天线,那么理论上的最大自由度是( \min(M, N) ),这意味着系统能够同时传输( \min(M, N) )个独立的数据流。
在雷达系统中,自由度与阵列的配置方式密切相关,例如使用互质阵列或最小冗余阵列等稀疏阵列设计,可以在物理阵元个数不变的情况下,通过虚拟阵元技术增加自由度,从而提高系统的分辨率和目标检测能力。互质阵列通过两个子阵的互质关系,能够在虚拟域上生成更多的虚拟阵元,从而获得更高的自由度。
自由度的概念在信息论中也有明确的定义,它与信道的复用增益和分集增益相关,是衡量系统性能的重要指标之一。
3 阵列方向图空域滤波性能
阵列方向图的空域滤波性能是指天线阵列在接收信号时,能够根据信号的空间分布特性进行选择性增强或抑制的能力。这种性能使得阵列能够对来自特定方向的信号进行增强,同时抑制来自其他方向的干扰和噪声,从而提高信号的信噪比和系统的整体性能。
在阵列信号处理中,空域滤波通常通过波束形成技术实现。波束形成可以是固定的,也可以是自适应的。固定波束形成依赖于阵列的几何结构和波达方向角,而自适应波束形成则能够根据接收信号的统计特性动态调整,以最大化信号的接收和干扰的抑制。
自适应波束形成技术,如最小方差无失真响应(MVDR)和采样协方差矩阵求逆(SMI)算法,能够根据接收信号的相关矩阵进行权重的自适应调整,以形成对特定方向信号的增强和对干扰信号的抑制。
此外,空域滤波的性能也受到阵列设计的影响,例如阵元数目、间距、以及加窗处理等都会影响波束的宽度和旁瓣电平,进而影响空域滤波的性能。
4 波束指向性
波束指向性是指天线或阵列在特定方向上的辐射或接收能力。它描述了天线波束的形状和方向,通常用来衡量天线对信号的发送和接收效率。一个具有良好指向性的天线能够将更多的能量集中在特定方向上,从而提高通信链路的质量和距离。
在雷达和通信系统中,波束指向性非常重要,因为它影响到系统的覆盖范围、干扰抑制能力以及信号的角分辨率。例如,一个具有窄波束宽度的天线可以更精确地定位信号的来源,而一个波束宽度较宽的天线则可能覆盖更广的区域。
波束指向性的主要参数包括:
波束宽度:波束达到最大辐射强度一半时的角度宽度,也称为3dB波束宽度。
主瓣:波束中最强的那部分辐射区域。
旁瓣:主瓣之外的辐射区域,通常强度较低,但在某些应用中可能会引起干扰。
后瓣:指向与主瓣相反方向的辐射区域。
通过设计天线的形状和尺寸,以及使用相控阵技术,可以调整波束的指向性,以适应不同的应用需求。
2 阵列孔径
阵列孔径是雷达和天文学中的一个重要概念,它指的是天线的有效接收面积。在雷达中,孔径越大,天线的方向性和分辨能力越强。合成孔径雷达(SAR)通过特定的信号处理技术,可以合成一个大尺寸的天线,从而提高分辨率。例如,SAR的方位向分辨率可以用以下公式表示:δ=L/2其中,( L ) 是天线的方位向尺寸,也就是孔径大小。
1 波束宽度
波束宽度是天线参数中的一个重要指标,它定义为在天线的最大辐射方向两侧,辐射功率下降到半功率(即最大功率的一半,或下降3dB)时的夹角。波束宽度与天线增益密切相关:通常,天线增益越大,波束宽度就越窄,这也意味着天线的指向性和角分辨率越高。
波束宽度可以分为两类:
水平波束宽度:在水平方向上,从最大辐射方向两侧,辐射功率下降3dB的两个方向的夹角。
垂直波束宽度:在垂直方向上,从最大辐射方向两侧,辐射功率下降3dB的两个方向的夹角。
在不同的应用中,波束宽度的要求也不同。例如,在雷达气象中,波束宽度决定了探测的角分辨率,而在航空器着陆系统中,波束宽度会根据跑道的长度来选择,以确保在所有的跑道入口处得到相同的制导精度。
2 珊瓣
栅瓣是相控阵天线中的一个现象,当阵元间距大于半波长时,会在天线方向图中出现与主瓣强度相近的多个辐射瓣。这些额外的瓣被称为栅瓣,它们是由于空间采样不足而产生的空间混叠现象。栅瓣的存在可能会导致目标位置的模糊和信号的误判,因此在天线设计时需要特别注意阵元间距,以避免栅瓣的产生。
栅瓣的强度通常与主瓣相似,这使得从栅瓣方向接收到的信号很难与主瓣信号区分开来。在实际应用中,如雷达或医学成像,栅瓣会影响系统的性能,因此设计时要尽量减少或消除栅瓣的影响。
3 瑞利距离(Rayleigh distance)
瑞利距离,或称瑞利长度(Rayleigh length)或瑞利范围(Rayleigh range),在光学和激光科学中指的是高斯光束沿着其传播方向从其腰部到其面积增加到腰部面积两倍的截面的距离。此时截面半径约为腰部半径的1.414倍。
瑞利距离的计算公式为:
其中,( z_R ) 是瑞利距离,( w_0 ) 是光束腰部的半径,( \lambda ) 是光束的波长。瑞利距离是高斯光束的一个重要参数,因为它决定了光束的聚焦特性和扩散速度。在瑞利距离之内,光束近似为平行光束,而超过这个距离,光束会开始显著发散。
4 多径效应
多径效应(multipath effect)是指电磁波在传播过程中,由于反射、折射或散射等原因,沿着不同的路径到达接收端。这些不同路径的信号在接收端叠加,由于它们的相位差异,可能会相互干扰,导致原始信号失真或产生错误。例如,如果两条路径的长度相差半个波长,那么两路信号在终点相遇时可能会相互抵消(波峰与波谷重合),造成信号衰减。
多径效应对无线通信系统有重要影响,尤其是在数字通信和雷达检测等领域。它可能导致信号质量下降,比如在移动电话通信中产生的快速衰落和信号失真。为了克服多径效应带来的问题,可以采用多种技术,如使用多天线系统(MIMO)、时域均衡、正交频分复用(OFDM)技术以及Rake接收机等方法来减少多径效应的影响。
3 虚拟阵列扩展技术之四阶累积量法
四阶累积量法是一种在信号处理领域,特别是在阵列信号处理和源定位问题中常用的方法。它利用信号的四阶统计特性来估计信号的波达方向(DOA)。这种方法对于非高斯信号和在存在高斯噪声的情况下特别有效,因为高斯噪声的二阶以上累积量为零。
简单来说,四阶累积量是基于信号的四阶矩,它可以提供关于信号源结构的信息,这些信息在二阶统计量(如协方差)中不可见。在阵列信号处理中,四阶累积量可以用来构造虚拟阵列,扩展阵列孔径,提高角度分辨力。
参考文章:基于四阶累积量的MUSIC算法与MUSIC-like算法(DOA估计)
clear;
close all;
clc;
derad = pi/180; % 角度变弧度
radeg = 180/pi; %弧度变角度
twpi = 2*pi; %2π
%%参数设置
M=10; %阵元数
snap=512; %信号长度、快拍数
dd=0.5; %阵元间距
d=0:dd:(M-1)*dd;
snr=10; %信噪比
K=9; %信源数
theta_range = 10;
% theta = (-theta_range:2*theta_range/(K-1):theta_range);
theta=[-40 10 2 -5 30 50 60 -20 -1]; %待估计的DOA
A=exp(-1i*twpi*d.'*sin(theta*derad)); %导向矢量矩阵
fs=pi/4; %产生非高斯信号的参数
w1=1:1/(K-1):2;
w=w1*fs;%信号频率
w=w.';
Pm1=0; %初始化MUSIC谱
%Pm2=0; %初始化MUSIC-like谱
iter=10; %循环次数
for i=1:iter
for k=1:K %产生信号
r(k)=2*pi*randn(); %产生随机相位
S(k,:)=10^(snr/20)*exp(j*w(k)*[0:snap-1]+r(k));
end
noise=(randn(M,snap)+1i*randn(M,snap))*sqrt(0.5); %产生具有单位方差的噪声
X=A*S+noise; %产生阵列接收数据
Rxx=X*X'/snap; %协方差矩阵
[EV,D]=eig(Rxx); %特征值分解,从小到大
EVA=diag(D)'; %将特征值矩阵对角线提取并转为一行
[EVA,I]=sort(EVA); %将特征值排序 从小到大
EV=fliplr(EV(:,I)); % 对应特征矢量排序
En1=EV(:,K+1:M); % 取矩阵的第K+1到M列组成噪声子空间
%% MUSIC-LIKE 算法
C4=(kron(X,conj(X))*(kron(X,conj(X))'))/snap-kron(X,conj(X))/snap*kron(X,conj(X))'/snap-...
kron(X*X'/snap,conj(X*X'/snap)); % 四阶累积量计算
[V,D] = svd(C4); % 奇异值分解
En2 = V(:,K+1:M^2); % 噪声子空间
%%空间谱计算
ang=-90:0.1:90;
for ii=1:length(ang)
a=exp(-1j*twpi*d.'*sin(ang(ii)*derad));
Pmusic1(ii)=1/abs(a'*En1*En1'*a); %MUSIC谱
b = kron(a,conj(a)); % 扩展后的导向矢量
%Pmusic2(ii)=1/abs(b'*En2*En2'*b);
end
Pm1=Pm1+10*log10(Pmusic1);
%Pm2=Pm2+10*log10(Pmusic2);
end
Pm1=Pm1/iter;
%Pm2=Pm2/iter;
Pm1=Pm1/max(Pm1);
%Pm2=Pm2/max(Pm2);
figure(1);
plot(ang,Pm1,'b','linewidth',1.2);
hold on;
grid on;
%plot(ang,Pm2,'r','linewidth',1.2);
xlabel('\theta(\circ)')
ylabel('空间谱')
legend('Music')%,%'Music-like');
1 信号的四阶统计特性
信号的四阶统计特性是指信号的四阶矩或四阶累积量,它们可以提供信号的非高斯性和非线性特性的信息。与二阶统计特性(如均值和方差)相比,四阶统计特性能够揭示更深层次的信号属性,特别是在信号的高斯假设不成立的情况下。
四阶累积量,特别是四阶矩,是分析非高斯信号的有力工具。例如,在通信领域,四阶累积量可以用于信号调制方式的识别,因为不同的调制方式会产生不同的四阶累积量特征。此外,四阶累积量对于高斯噪声具有不变性,这意味着它们可以在存在高斯噪声的情况下有效地提取信号特性。
四阶累积量的一个应用实例是在MQAM信号调制方式的自动识别中,通过构造特征参数F,利用四阶累积量来区分方形QAM和十字形QAM信号,并进一步识别不同阶数的QAM信号。
4 虚拟阵列扩展技术之外推法
虚拟阵列扩展技术中的外推法是一种利用已有阵元接收信号的趋势来估计并构造虚拟阵元位置处的信号,从而扩展阵列孔径并提高角度分辨力的方法。这种技术通常在信号处理领域中应用,尤其是在阵列信号处理和源定位问题中。
外推法的基本思想是,在空间中的均匀线阵条件下,可以利用阵列的一部分阵元接收的数据来估计其他阵元的数据。例如,如果有一个N元的均匀线阵,那么第N个阵元的数据可以用前N-1个阵元的数据来估计。这种方法在信噪比较低的情况下可能性能较差,因为它依赖于数据的趋势和模式的准确性。
在实际应用中,外推法可以通过不同的数学模型来实现,如线性外推、多项式外推等。选择哪种模型取决于数据的特性和预测的目的。外推法在理论上已经得到证明,并且有实时实现的方法。
1 线性外推
线性外推是一种数学方法,用于根据已知数据点的线性趋势来预测未来的值。这种方法假设数据点之间的关系是线性的,即它们可以用一条直线来近似。线性外推的基本公式是:
y=(x−x1)⋅(x2−x1)/(y2−y1)+y1
其中,( (x_1, y_1) ) 和 ( (x_2, y_2) ) 是已知的数据点,( x ) 是要预测的未来点的横坐标,而 ( y ) 是对应的纵坐标预测值。这个公式基于两个已知点来确定一条直线,然后沿着这条直线外推到新的 ( x ) 值。
请注意,在使用线性外推时,由于它涉及对已知数据范围之外的估计,所以其预测结果需要谨慎对待,并结合专业知识和实际情况进行分析。
%基于虚拟阵列扩展技术线性外推法的经典
clear; close all;
%%%%%%%% MUSIC for Uniform Linear Array%%%%%%%%
derad = pi/180; %角度->弧度
N = 8; % 阵元个数
M = 3; % 信源数目
theta = [-50 20 15]; % 待估计角度
snr = 10; % 信噪比
K = 512; % 快拍数
dd = 0.5; % 阵元间距
d=0:dd:(N-1)*dd; %阵元位置
A=exp(-1i*2*pi*d.'*sin(theta*derad)); %方向矢量
Nv = 2*N; % 虚拟阵元个数,假设为实际阵元的两倍
% 构建虚拟阵列的位置向量
dv = 0:dd:(Nv-1)*dd;
Av = exp(-1i*2*pi*dv.'*sin(theta*derad)); % 虚拟方向矢量
A=Av;
%%%%构建信号模型%%%%%
S=randn(M,K); %信源信号,入射信号
X=A*S; %构造接收信号
X1=awgn(X,snr,'measured'); %将白色高斯噪声添加到信号中
% 计算协方差矩阵
Rxx=X1*X1'/K;
% 特征值分解
[EV,D]=eig(Rxx); %特征值分解
EVA=diag(D)'; %将特征值矩阵对角线提取并转为一行
[EVA,I]=sort(EVA); %将特征值排序 从小到大
EV=fliplr(EV(:,I)); % 对应特征矢量排序
% 遍历每个角度,计算空间谱
for iang = 1:361
angle(iang)=(iang-181)/2;
phim=derad*angle(iang);
a=exp(-1i*2*pi*dv*sin(phim)).';
En=EV(:,M+1:N); % 取矩阵的第M+1到N列组成噪声子空间
Pmusic(iang)=1/(a'*En*En'*a);
end
Pmusic=abs(Pmusic);
Pmmax=max(Pmusic)
Pmusic=10*log10(Pmusic/Pmmax); % 归一化处理
h=plot(angle,Pmusic);
set(h,'Linewidth',2);
xlabel('入射角/(degree)');
ylabel('空间谱/(dB)');
set(gca, 'XTick',[-90:30:90]);
grid on;
2 多项式外推
多项式外推是一种基于已知数据点构建多项式函数,并利用该函数预测未知数据点的值的方法。与线性外推不同,多项式外推可以处理更复杂的数据趋势,因为它使用的是高阶多项式,而不仅仅是一阶(线性)关系。
在多项式外推中,我们首先需要确定一个多项式的阶数,然后通过已知的数据点来计算多项式的系数。例如,如果我们选择二阶多项式(二次函数),那么我们的目标是找到一个形如 ( f(x) = ax^2 + bx + c ) 的函数,其中 ( a ), ( b ), 和 ( c ) 是多项式的系数。
一旦我们有了这个多项式,我们就可以用它来预测任何未知点的值。例如,如果我们想预测 ( x ) 点之外的值,我们只需将该 ( x ) 值代入多项式中即可得到预测值 ( f(x) )。
多项式外推的一个关键问题是选择合适的多项式阶数。如果阶数太低,可能无法捕捉数据的真实趋势;如果阶数太高,则可能导致过拟合,即多项式过于复杂,反而无法准确预测新数据点的值。
在实际应用中,多项式外推通常需要结合领域知识和数据分析来确定最合适的多项式模型。此外,还需要注意的是,外推本质上是一种预测,它的准确性受到多种因素的影响,包括数据的分布、样本大小、以及外推距离等。
5 虚拟阵列扩展技术之内插法
虚拟阵列扩展技术中的内插法主要应用于阵型变换,它通过在已有阵元之间构造新的虚拟阵元来改变阵列的形状或增加阵元数目,从而提高阵列的角度分辨力。这种方法适用于将特殊阵型转换成易于信号处理的阵型,例如将均匀圆阵转换成虚拟线阵,或将稀疏线阵转换成均匀直线阵,使其能够直接利用现有直线阵相关算法进行处理。
内插法在虚拟阵列技术中的一个重要应用是在方向估计(DOA)中,它可以提高阵元天线的利用效率,并对整个阵列的自由度有所提升。通过内插法,可以在不增加物理阵元的前提下,虚拟地扩展阵列孔径,从而提高阵列的空间分辨率和方向图的空域滤波性能,如提高波束指向性,同时降低旁瓣和抑制栅瓣。
需要注意的是,内插法在变换区域内误差较小,但在变换区域外误差可能较大。因此,选择合适的内插方法和参数对于确保阵列性能至关重要。
% 假设原始阵列元素数量为N,虚拟阵列元素数量为2N
N = 8; % 原始阵列元素数量
M = 2; % 信号源数量
d = 0.5; % 阵元间距(波长的一半)
SNR = 10; % 信噪比(dB)
% 生成原始阵列数据
arrayData = randn(N, 1) + 1i*randn(N, 1); % 创建一个复数数组,用于模拟阵列数据
% 信号源方向(度)
theta = [30, -45];
% 构建阵列流型矩阵
A = exp(-1i*2*pi*d*sin(deg2rad(theta)).*(0:N-1)');
% 生成信号和噪声
S = randn(M, 1) + 1i*randn(M, 1); % 信号
X = A*S; % 无噪声信号
X = awgn(X, SNR); % 加入噪声
% 协方差矩阵
R = X*X';
% 特征分解
[E, D] = eig(R);
[~, ind] = sort(diag(D), 'descend');
En = E(:, ind(M+1:end)); % 噪声子空间
% 线性外推法扩展虚拟阵列
virtualArrayData = zeros(2*N, 1); % 初始化虚拟阵列数据为零
for i = 1:N
virtualArrayData(i) = arrayData(i); % 复制原始阵列数据到虚拟阵列的前半部分
% 线性外推填充虚拟阵列的后半部分
virtualArrayData(N+i) = 2*arrayData(N) - arrayData(N-i+1);
end
% 使用虚拟阵列数据重新计算协方差矩阵和噪声子空间
R_virtual = virtualArrayData * virtualArrayData';
[E_virtual, D_virtual] = eig(R_virtual);
[~, ind_virtual] = sort(diag(D_virtual), 'descend');
En_virtual = E_virtual(:, ind_virtual(M+1:end)); % 虚拟阵列的噪声子空间
% 使用虚拟阵列数据进行MUSIC谱估计
Pmusic_virtual = zeros(1, 180);
for phi = 1:180
a_virtual = exp(-1i*2*pi*d*sin(deg2rad(phi)).*(0:2*N-1)');
Pmusic_virtual(phi) = 1 / (norm(En_virtual'*a_virtual))^2;
end
% 绘制虚拟阵列的MUSIC谱
plot(1:180, 10*log10(Pmusic_virtual/max(Pmusic_virtual)), 'LineWidth', 2);
title('MUSIC Spectrum with Virtual Array Extension');
xlabel('Angle (degrees)');
ylabel('Normalized Spatial Spectrum (dB)');