阅读论文:一种提升均匀自由度的稀疏阵列设计

本文探讨了互质阵列差分共阵在信号处理中的应用,涉及冗余性原理在提高系统可靠性、欠定DOA估计方法如压缩感知和子空间分析,以及稀疏阵列设计如何增强阵列自由度。重点介绍了CACIS阵列和压缩阵元间距的互质阵列设计。
摘要由CSDN通过智能技术生成

1 引言

1 互质阵列差分共阵

互质阵列差分共阵是一种阵列信号处理技术,它结合了互质阵列和差分阵列的概念。互质阵列由两个子阵组成,其中一个子阵的阵元个数为N,间距为M的均匀线阵;另一个子阵的阵元间距为N,阵元个数为2M-1的均匀线阵。M和N是互质数,因此称为互质阵列。这种阵列可以提供比传统均匀线阵更高的自由度和分辨率。

差分阵列是互质阵列中两个子阵的实际阵元位置之间的位置间距的集合,它关于原点对称。差分阵列可以通过虚拟化互质阵列产生,它是PC中的任意两个元素作差得到的虚拟阵列。传统互质阵列的差分共阵列存在“空洞”,即缺少一些虚拟阵列元素。为了解决这个问题,采用延伸的互质阵列来让差分共阵列获得更长的连续均匀线阵。

2 冗余性

冗余性指的是在系统中故意增加的多余部分,其目的是提高系统的可靠性和安全性。在通信系统中,冗余性可以通过多种形式实现,例如硬件冗余、信息冗余和软件冗余。

硬件冗余可能包括双电源系统、存储子系统的磁盘镜像RAID配置、多个网卡以及对称多处理器系统等。
信息冗余涉及到数据的冗余存储,如差错检查和纠错法,以确保数据的完整性和准确性。
软件冗余可能包括双机集群或代码冗余,以提供容错能力和高可用性。
虽然冗余性可以增加系统的复杂性,但它是确保关键系统在出现故障时能够继续运行的重要手段。

3 欠定DOA 估计

欠定DOA(Direction of Arrival)估计是信号处理中的一个重要问题,特别是在源数超过接收传感器数的情况下。这种情况下的DOA估计方法需要能够处理多个信号源的角度估计,即使它们的数量超过了阵列的传感器数量。

在欠定DOA估计中,常用的方法包括基于稀疏信号表示的方法,如压缩感知(Compressed Sensing, CS)和基于子空间的方法,如MUSIC(Multiple Signal Classification)和ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)。这些方法可以通过利用信号的稀疏性或信号子空间的特性来估计更多的信号源的DOA。

例如,压缩感知方法可以在信号稀疏的假设下,使用较少的样本来恢复信号,并估计出信号源的DOA。而MUSIC和ESPRIT等方法则是通过分析接收信号的协方差矩阵,提取信号子空间和噪声子空间,从而估计出信号源的DOA。

在非均匀噪声条件下,互质阵列欠定DOA估计方法可以通过协方差矩阵重构和矩阵填充来提高鲁棒性。这些方法通过对接收数据的协方差矩阵进行处理,以抑制非均匀噪声的影响,并结合子空间方法进行DOA估计。

4 阵列均匀自由度

在信号处理中,特别是在阵列信号处理和方向估计(DOA)领域,"阵列均匀自由度"通常指的是阵列能够提供的独立测量数量。这个数量决定了阵列能够区分的信号源的最大数量。互质阵列和其他稀疏阵列设计旨在通过非均匀的物理阵元布局来增加阵列的自由度,从而提高系统的分辨能力。

例如,互质阵列通过组合两个子阵列,其中一个子阵列的阵元间距为M的倍数,另一个子阵列的阵元间距为N的倍数,M和N是互质数。这种设计允许阵列在虚拟域中产生更多的虚拟阵元,从而增加自由度。这些虚拟阵元可以用来估计更多的信号源方向,即使它们的数量超过了物理阵元的数量。

有研究表明,通过对互质阵列进行扩展,例如将间距较大的子阵进行二倍扩展,可以获得更多的自由度。这种扩展的互质阵列能够在保持阵列孔径不变的情况下,通过填充虚拟阵元的“空洞”,进一步提高阵列的自由度。

2 稀疏阵列差分共阵模型

阵元位置为Zid的N阵元线性稀疏阵列,其中Zi取自整数集合\mathbb{Z}=\{z_i,i=1,2,\cdots,N\},d=\lambda/2为最小阵元间距,\lambda为信源波长。假设功率为\{\sigma_{1}^{2},\sigma_{2}^{2},\cdots,\sigma_{K}^{2}\}的K个远场窄带不相关信源从不同方向\{\theta_{1},\theta_{2},\cdots,\theta_{K}\}入射到该阵列。

阵列观测数据模型为:x(t)=As(t)+n(t)

\alpha_{k}为第k个信源的阵列流型矢量,表示为:\alpha_k=[e^{-j2\pi z_1d\sin\theta_k/\lambda},e^{-j2\pi z_2d\sin\theta_k/\lambda},\cdots,e^{-j2\pi z_Nd\sin\theta_k/\lambda}]^T

观测数据x(t)的协方差矩阵:\boldsymbol{R}_{x}=E[\boldsymbol{x}(t)\boldsymbol{x}^{H}(t)]=\boldsymbol{AR}_{s}\boldsymbol{A}^{H}+\sigma_{n}^{2}\boldsymbol{I}

信号协方差矩阵:R_s=E[s(t)s^H(t)]=diag\{\sigma_1^2,\sigma_2^2,\cdots,\sigma_K^2\}

有限快拍数T条件下的协方差矩阵Rx可近似表示为:R_x=\frac1T\sum_{t=1}^Tx(t)x^H(t)

Rx经过向量化后表示为:r_1=vec(R_x)=(A^*\circ A)\boldsymbol{q}+\sigma_n^2vec(\boldsymbol{I})

“ 0”表示Khatri-Rao 积,q=[\sigma_{1}^{2},\sigma_{2}^{2},\cdots,\sigma_{K}^{2}]^{T}为信源功率矢量,(A^*\circ A)差分共阵阵列流型矩阵,差分共阵阵列流型矩阵\mathbb{D}=\{(z_a-z_b),a,b=1,2,\cdots,N\}

3 差分共阵分析与提出的稀疏阵列设计

1 压缩阵元间距的互质阵列差分共阵分析

CACIS 由阵元间距为d1=Md、阵元数目为N及阵元间距为d2=Nd、阵元数目为M的均匀线性子阵组成,省略半波长d的阵元位置表示为:\mathbb{L}_1=\{Mn,0\leq n\leq N-1\}\cup\{Nm,0\leq m\leq M-1\}其中,M=M/p,p为整数压缩因子。

CACIS 差分共阵位置集合为\mathbb{D}_{1},表示为:\mathbb{D}_1=\mathbb{D}_{1s}^+\cup\mathbb{D}_{1s}^-\cup\mathbb{D}_{1c}^+\cup\mathbb{D}_{1c}^-

2 提出的稀疏阵列设计

未完待续

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值