统计学基础——两个样本均值(频率)之差的分布

一、样本均值之差的定义

\overline{X}_{1}是独立的抽自总体X_{1}\sim N(\mu _{1},\sigma _{1}^{2})的一个容量为n_{1}的样本的均值。\overline{X}_{2}是独立的抽自总体X_{2}\sim N(\mu _{2},\sigma _{2}^{2})的一个容量为n_{2}的样本的均值。

则具备以下性质:

  1. E(\overline{X}_{1}-\overline{X}_{2})=E(\overline{X}_{1})-E(\overline{X}_{2})=\mu _{1}-\mu _{2} ,E(\overline{X}_{1})表示抽取多次获取样本均值\overline{X}_{1}的数学期望,根据中心极限定理,则E(\overline{X}_{1})=\mu _{1}。                                                                                                  
  2. D(\overline{X}_{1}\pm\overline{X}_{2})=D(\overline{X}_{1})+D(\overline{X}_{2})=\frac{\sigma _{1}^{2}}{n_{1}}+\frac{\sigma _{2}^{2}}{n_{2}}
  3. S(\overline{X}_{1}\pm\overline{X}_{2})=\sqrt{D(\overline{X}_{1}\pm\overline{X}_{2})}=\sqrt{\frac{\sigma _{1}^{2}}{n_{1}}+\frac{\sigma _{2}^{2}}{n_{2}}}

n_{1}n_{2}足够大的时候,一般要分别大于50,则\overline{X}_{1}-\overline{X}_{2}的抽样分布不管两样本的总体分布如何(正态或者偏态)均可看似正态分布来处理。其均值和方差求值如上面式子所示。

如果两总体为正态分布,则\overline{X}_{1}-\overline{X}_{2}也为正态分布,其均值和方差求值如上面式子所示。

【补充】

定理:设XY为两个随机变量,其均值E(X)E(Y),方差D(X)D(Y)均存在,求D(X+Y)D(X-Y)

若不相关(XY独立)的话就等于D(X\pm Y)=D(X)+D(Y)
       若相关(XY不独立)的话,就是D(X\pm Y)=D(X)+D(Y)\pm 2Cov(X,Y)

证明:X=(x_{1},x_{2},...,x_{n})Y=(y_{1},y_{2},...,y_{n}),则D(X-Y)=D(X)+D(Y)。 \begin{align} D(X-Y) &= \frac{[(x_{1}-y_{1})-E(X-Y)]^{2}+[(x_{2}-y_{2})-E(X-Y)]^{2}+\cdot \cdot \cdot +[(x_{n}-y_{n})-E(X-Y)]^{2}}{n} \\ &=\frac{[(x_{1}-y_{1})-(E(X)-E(Y))]^{2}+[(x_{2}-y_{2})-(E(X)-E(Y))]^{2}+\cdot \cdot \cdot +[(x_{n}-y_{n})-(E(X)-E(Y))]^{2}}{n} \\ &=\frac{[(x_{1}-E(X))-(y_{1}-E(Y))]^{2}+[(x_{2}-E(X))-(y_{2}-E(Y))]^{2}+\cdot \cdot \cdot +[(x_{n}-E(X))-(y_{n}-E(Y))]^{2}}{n} \\ &=\frac{[(x_{1}-E(X))^{2}+(x_{2}-E(X))^{2}+\cdot \cdot \cdot +(x_{n}-E(X))^{2}]+[(y_{1}-E(Y))^{2}+(y_{2}-E(Y))^{2}+\cdot \cdot \cdot +(y_{n}-E(Y))^{2}]}{n} \\ & -\frac{2[(x_{1}-E(X))(y_{1}-E(X))+(x_{2}-E(X))(y_{2}-E(X))+\cdot \cdot \cdot +(x_{n}-E(X))(y_{n}-E(X))]}{n} \\ &=D(X)+D(Y)-2cov(X,Y) \end{align}

 

二、样本频率之差的定义

设分别从具有参数为\pi _{1}和参数为\pi _{2}的二项总体中抽取包含n_{1}个观测值和n_{2}个观测值的独立样本,则两个样本比例差的抽样分布为:

\overline{P}_{1}-\overline{P}_{2}=\frac{X_{1}}{n_{1}}-\frac{X_{2}}{n_{2}}

具备以下性质:

  1. E(\overline{P}_{1}-\overline{P}_{2})=E(\overline{P}_{1})-E(\overline{P}_{2})=\pi _{1}-\pi _{2}
  2. D(\overline{P}_{1}\pm\overline{P}_{2})=D(\overline{P}_{1})+D(\overline{P}_{2})=\frac{\pi_{1} (1-\pi_{1})}{n_{1}}+\frac{\pi_{2} (1-\pi_{2})}{n_{2}}

\large \pi\large 1-\pi 不太小,而 \large n足够大,通常 \large n\pi\large n(1-\pi ) 均大于或等于5,\overline{P}_{1}-\overline{P}_{2}的抽样分布近似为正态分布,其均值和方差的公式如上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xia ge tou lia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值