刚才做一个dp是fib的现在来一道fib裸题233
题目已经剧透的差不多了。。
#include <cstdio>
#define rep(i,j,k) for(int i=j;i<k;i++)
const int mod = 10000;
struct Matrix {
int v[2][2];
Matrix(int x = 0) { rep(i,0,2)rep(j,0,2)v[i][j]=0;rep(i,0,2) v[i][i] = x; }
int *operator [](int x) { return v[x]; }
friend Matrix operator *(Matrix a, Matrix b){
Matrix c;
rep(i,0,2) rep(j,0,2) rep(k,0,2)
c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % mod;
return c;
}
friend Matrix operator ^(Matrix a, int n){
Matrix ans(1);
for (; n; n >>= 1, a = a * a)
if (n & 1) ans = ans * a;
return ans;
}
} b;
int main() {
b[0][0]=b[0][1]=b[1][0]=1; int n;
while(scanf("%d", &n)!=EOF&&n!=-1)
if(n==0)puts("0");else
printf("%d\n", (b^(n-1))[0][0]);
return 0;
}
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11515 | Accepted: 8183 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., printFn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source