JZOJ 5931. 【NOIP2018模拟10.27】冒泡排序

题目

求一个n的全排列的变成 1…n的序列 期望最少交换次数。

题解

实在想不出来,可以找规律。
其实这题不需要找规律。

方法1

第一类斯特林数灵感?
hzj的第一题,序列前n-1个元素只能够与第n个交换,想到一圈一圈地换。
这里也是类似的,只不过任意两个元素都可以交换。
此外,如果a[i]=i了,那么a[i]不用再和其他元素交换。
考虑n个元素中有多少个圆排列。圆是无序的。
所以可以用第一类斯特林数做。
S [ i ] [ j ] = S [ i − 1 ] [ j − 1 ] + ( i − 1 ) ∗ S [ i − 1 ] [ j ] S[i][j]=S[i-1][j-1]+(i-1)*S[i-1][j] S[i][j]=S[i1][j1]+(i1)S[i1][j]
A n s [ n ] = ∑ i = 1 n Ans[n]=\sum_{i=1}^{n} Ans[n]=i=1n ( n − i ) (n-i) (ni) ∗ S [ n ] [ i ] *S[n][i] S[n][i]
如何O(n)?
将第i行的 S [ i ] [ j ] S[i][j] S[i][j]向右下方移动,则乘的绿色的数是一样的。
将第i行的 S [ i ] [ j ] S[i][j] S[i][j]向下移,每个 S [ i ] [ j ] S[i][j] S[i][j]乘的绿色的数要+1.
相当于加上 ( A n s [ n − 1 ] + ( n − 1 ) ! ) ∗ ( n − 1 ) (Ans[n-1]+(n-1)!)*(n-1) (Ans[n1]+(n1)!)(n1)
A n s [ n ] = ( A n s [ n − 1 ] + ( n − 1 ) ! ) ∗ ( n − 1 ) + A n s [ n − 1 ] Ans[n]=(Ans[n-1]+(n-1)!)*(n-1)+Ans[n-1] Ans[n]=(Ans[n1]+(n1)!)(n1)+Ans[n1]
本题的答案为 A n s [ n ] / ( n ! ) Ans[n]/(n!) Ans[n]/(n!)

方法2

考虑序列中有多少个圆。
f [ i ] f[i] f[i]为所有n的全排列的圆的个数之和。
则考虑1号点所在圆的大小,则 f [ i ] = n ! + ∑ i = 1 n C ( n − 1 , i − 1 ) ∗ ( i − 1 ) ! ∗ f [ n − i ] f[i]=n!+\sum_{i=1}^nC(n-1,i-1)*(i-1)!*f[n-i] f[i]=n!+i=1nC(n1,i1)(i1)!f[ni]
其中 n ! n! n!表示n!个全排列,每个包含1个包含1号点的圆。式子的其他部分表示全排列除了包含1的圆以外的其他圆的个数的总和。
答案为 n − f [ n ] n ! n-\frac{f[n]}{n!} nn!f[n]

线性求逆元

对于一个奇质数,有:
i n v [ i ] = ( m o − ⌊ m o i ⌋ ) ∗ i n v [ m o % i ] % m o inv[i]=(mo-\lfloor\frac{mo}{i}\rfloor)*inv[mo\%i]\%mo inv[i]=(moimo)inv[mo%i]%mo
证明:
a = ⌊ m o i ⌋ , b = m o % i a=\lfloor\frac{mo}{i}\rfloor,b=mo\%i a=imo,b=mo%i
则有 m o = a ∗ i + b ⇒ a ∗ i + b ≡ 0 ( m o d   m o ) ⇒ a ∗ i ≡ − b ( m o d   m o ) mo=a*i+b\Rightarrow a*i+b≡0(mod\ mo)\Rightarrow a*i≡-b(mod \ mo) mo=ai+bai+b0(mod mo)aib(mod mo)
两边同时除以 b ∗ i b*i bi得,
a ∗ i n v [ b ] ≡ − i n v [ i ] ( m o d   m o ) ⇒ − a ∗ i n v [ b ] ≡ i n v [ i ] ( m o d   m o ) a*inv[b]≡-inv[i](mod\ mo)\Rightarrow -a*inv[b]≡inv[i](mod\ mo) ainv[b]inv[i](mod mo)ainv[b]inv[i](mod mo)
所以, ( m o − ⌊ m o i ⌋ ) ∗ i n v [ m o % i ] % m o = i n v [ i ] (mo-\lfloor\frac{mo}{i}\rfloor)*inv[mo\%i]\%mo=inv[i] (moimo)inv[mo%i]%mo=inv[i]

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstring>
#include<algorithm>
#define N 10000020
#define mo 998244353
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
int i,j,k,l,n,m,T;
int jc[N],ny[N],ans[N];
int ksm(int x,int y){
	int rs=1;
	for(;y;y>>=1,x=(1ll*x*x)%mo)if(y&1)rs=(1ll*rs*x)%mo;
	return rs;
}
int pre(){
	int i,j;
	jc[0]=jc[1]=ny[0]=ny[1]=1;
	fo(i,2,N-10)jc[i]=(1ll*jc[i-1]*i)%mo;
	ny[N-10]=ksm(jc[N-10],mo-2);
	fd(i,N-11,2)ny[i]=(1ll*ny[i+1]*(i+1))%mo;
}
int main(){
        pre();
	ans[1]=1;
	fo(i,2,N-9)ans[i]=((1ll*(ans[i-1]+jc[i])%mo*i)%mo+ans[i-1])%mo;
	fo(i,1,N-9)ans[i]=(1ll*ans[i]*ny[i+1])%mo;
	scanf("%d",&T);
	while(T--){
	    scanf("%d",&n);
	    printf("%d\n",ans[n-1]); 
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值