考研数二第七讲 常见的等价无穷小,微分函数,泰勒展开式,基本积分方法,微分导数,三角函数积分

文章讨论了高等数学考试中的重要考点,如等价无穷小的运用、求导公式、不定积分和定积分的区别,以及泰勒展开式和函数的可导性与可微性的关系。在一元函数中,可导与可微是等价的,但在多元函数中则不等价。掌握这些概念和公式能提高解题效率和准确性。
摘要由CSDN通过智能技术生成

在高数考试中,关于等价无穷小的运用,以及定积分/不定积分这些微分,求导都是高频考点,如果熟练应用掌握这些常见的公式,在实际作答中极大缩减时间以及降低错误率,所以还是需要记住这些常用的公式,最好熟记于心,对于解答选择题还是很有必要的。

等价无穷小:

常用的到等价无穷小,有下面这些,会陆续补充,欢迎大家补充

求导公式

常见的求导函数,欢迎补充

不定积分公式

微分不定积分求解,对不定积分求解和定积分求解的区别,定积分求解得到的是一个值,不定积分得到的是一个函数式

关于在0-π/2上的定积分,当n为偶数时与n为基数时的结论如下,在考试中也会有运用

泰勒展开式

泰勒展开式可以在求解计算的时候快速解决问题,大家可以讲下面的几个函数展开式记住前几项即可

求极限

三角函数

函数图形描述中涉及到的重要公式

基本积分方法

第一类换元法

常见的凑微分类型

导数和微分概念区别

导数和微分到底有什么区别?为什么有时候说函数可导,有时候说函数可微?

几乎所有老师都会跟大家强调,在一元函数里,可导和可微是一回事,是等价的。这就提出了一个问题:对于两个等价的概念,为什么所有教材都会重复讲两遍

事实上,把两个等价概念重复讲两遍,可能有两个原因。一是这两个概念虽然等价,但表达了不同的内涵;二是在以后的推广中,两个概念可能会产生区别

设函数 y=f(x) 在点 x0 的某邻域上有定义,若对于任意 x∈U(x0) ,都成立 f(x)−f(x0)=AΔx+α(Δx) ,其中 A 是只与点 x0 有关的常数(线性逼近函数的斜率), α(Δx) 是较 Δx 高阶的无穷小,则称函数在该点可微。其中 AΔx 叫做线性主部(主要部分,因为误差很小),记 dy=AΔx ,称为 y 的微分。

现在的问题是,常数 A 如何确定?也就是说,如果一个函数在 x0 可微,我们该用多大斜率的线性函数去逼近它(如何合适地摆放这根木棍)?为此,我们将微分式子两边同时除以 Δx ,得到:

我们把上面这个极限称为 f(x) 在 x0 处的导数,记作 f′(x0) ,并称函数在该点可导。

从上面的推导过程可以看出,如果函数在某点可微,那么必然在该点可导。反过来,如果函数在某点可导,也即存在极限:

换句话说,如果函数在某点可导,那么必然在该点可微。由此可见,可导和可微在一元函数中是等价的。

在多元函数中,即使任何方向偏导数存在,函数也不一定可微。这说明,在多元函数中,可微比可导强得多。

三角函数积分

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员路同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值