在高数考试中,关于等价无穷小的运用,以及定积分/不定积分这些微分,求导都是高频考点,如果熟练应用掌握这些常见的公式,在实际作答中极大缩减时间以及降低错误率,所以还是需要记住这些常用的公式,最好熟记于心,对于解答选择题还是很有必要的。
等价无穷小:
常用的到等价无穷小,有下面这些,会陆续补充,欢迎大家补充
求导公式
常见的求导函数,欢迎补充
不定积分公式
微分不定积分求解,对不定积分求解和定积分求解的区别,定积分求解得到的是一个值,不定积分得到的是一个函数式
关于在0-π/2上的定积分,当n为偶数时与n为基数时的结论如下,在考试中也会有运用
泰勒展开式
泰勒展开式可以在求解计算的时候快速解决问题,大家可以讲下面的几个函数展开式记住前几项即可
求极限
三角函数
函数图形描述中涉及到的重要公式
基本积分方法
第一类换元法
常见的凑微分类型
导数和微分概念区别
导数和微分到底有什么区别?为什么有时候说函数可导,有时候说函数可微?
几乎所有老师都会跟大家强调,在一元函数里,可导和可微是一回事,是等价的。这就提出了一个问题:对于两个等价的概念,为什么所有教材都会重复讲两遍?
事实上,把两个等价概念重复讲两遍,可能有两个原因。一是这两个概念虽然等价,但表达了不同的内涵;二是在以后的推广中,两个概念可能会产生区别。
设函数 y=f(x) 在点 x0 的某邻域上有定义,若对于任意 x∈U(x0) ,都成立 f(x)−f(x0)=AΔx+α(Δx) ,其中 A 是只与点 x0 有关的常数(线性逼近函数的斜率), α(Δx) 是较 Δx 高阶的无穷小,则称函数在该点可微。其中 AΔx 叫做线性主部(主要部分,因为误差很小),记 dy=AΔx ,称为 y 的微分。
现在的问题是,常数 A 如何确定?也就是说,如果一个函数在 x0 可微,我们该用多大斜率的线性函数去逼近它(如何合适地摆放这根木棍)?为此,我们将微分式子两边同时除以 Δx ,得到:
我们把上面这个极限称为 f(x) 在 x0 处的导数,记作 f′(x0) ,并称函数在该点可导。
从上面的推导过程可以看出,如果函数在某点可微,那么必然在该点可导。反过来,如果函数在某点可导,也即存在极限:
换句话说,如果函数在某点可导,那么必然在该点可微。由此可见,可导和可微在一元函数中是等价的。
在多元函数中,即使任何方向偏导数存在,函数也不一定可微。这说明,在多元函数中,可微比可导强得多。