通信原理
第一章 绪论
1.1、通信系统的组成
一、通信系统的一般模型
发送设备:
将信源和信道匹配起来,即将信源产生的消息信号变换成适合在信道中传输的信号。
二、模拟通信与数字通信
模拟信号:信号参量的取值是连续的或取无穷多个值的、也称连续信号,这个连续是指信号的某一参量可以连续变化,而不一定在时间上也连续。
数字信号: 信号参量只能取有限个值,也称离散信号,这个离散是指信号的某一参量是离散变化的,而不一定在时间上也离散。
模拟通信系统模型 :
基带 :信源发出的原始电信号是基带信号,一般不宜直接传输。基带的含义是指信号的频谱从零频附近开始。需要把基带信号变换成频带信号(已调信号),完成这种变换和反变换作用的通常是调制器和解调器。
频带信号特征:1、携带有信息;2、适合在信道中传输;3、信号的频谱具有带通形式且中心频率远离零频。
数字通信系统模型:
信源编码作用:
- 设法减少码元数目和降低码元速率,即通常所说的数据压缩。
- 当信息源给出的是模拟语音信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输。(可使用脉冲编码调制(PCM)和增量调制(ΔM))
信道编码作用:
- 为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分(监督元),组成“抗干扰编码”。
- 接收端的信道译码器按相应规则解码,从解码过程发现错误或纠正错误。
从而提高通信系统抗干扰能力,实现可靠通信。
数字调制与解调:
数字调制就是把数字基带信号的频谱搬移到高频处, 形成适合在信道中传输的频带信号。
1.2、信息及其度量
一、信息量与概率之间的关系
信号是消息的载体,信息是消息的内涵。
消息中包含的信息量与消息发生的概率密切相关。消息出现的概率越小,消息中包含的信息量就越大。
消息所含信息量I与消息出现的概率**P(x)**关系:
**P(x)**越小, I越大; 反之, I越大, 且
-
P(x)→1时, I→0
-
P(x)→0时, I→∞
二、信息量I的定义
1.3、 主要性能指标
一、模拟通信系统的性能指标
有效性:系统传输消息的效率——通信资源(频率、时间)的充分利用。用所传信号的有效传输带宽来表征,越小越有效。
- 在给定的信道内能够容纳多大的信息量,或允许传输多高的信息率
可靠性: 信息传输的准确程度,传送消息的准确还原。输出信噪比(仅考虑加性干扰):接收端输出的信号平均功率与噪声平均功率之比(SNR)
根据信息论的观点,通信系统的有效性和可靠性常常是一对矛盾。可靠性是矛盾的主要方面,即发送信息在接收端的准确还原。
二、数字通信系统的性能指标
符号(码元)传输速率: R B R_B RB简称传码率。它表示单位时间内传输码元的数目,单位是波特(Baud),记为B。
数字信号有多进制和二进制之分,但码元速率与进制数无关,只与传输的码元长度T有关
信息传输速率 R b R_b Rb:又称传信率。
-
它表示单位时间内传递的平均信息量或比特数
-
单位为“比特/秒”,记为bit/s ,或 b/s ,或bps
码元速率与信息速率之间的关系:
有效性: 频带利用率——单位频带内的码元传输速率
可靠性衡量数字通信系统可靠性的指标是差错率, 常用误码率和误信率表示。
实际中分析误码率,可用
P e = P ( 0 ) P ( 1 / 0 ) + P ( 1 ) P ( 0 / 1 ) P_e = P(0)P(1/0) + P(1)P(0/1) Pe=P(0)P(1/0)+P(1)P(0/1)
P e P_e Pe与 P b P_b Pb的关系
- 二进制—— P e P_e Pe = P b P_b Pb
- M进制—— P e P_e Pe > P b P_b Pb
第二章 随机过程
2.1 随机过程的基本概念和统计特性
-
一、随机过程的概念
随机过程:与时间有关的函数,但任一时刻的取值不确定(随机变量)
- 样本函数:随机过程的具体实现
- 样本空间:所有实现构成的全体
- 所有样本函数及其统计特性构成了随机过程
-
二、随机过程的统计特性
分布函数与概率密度函数
- 一维分布函数: F 1 ( x 1 , t 1 ) = P [ ξ ( t 1 ) ≤ x 1 ] F_1(x_1,t_1)=P[\xi(t_1)\le x_1] F1(x1,t1)=P[ξ(t1)≤x1]
- 一维概率密度函数: ∂ F 1 ( x 1 , t 1 ) ∂ x 1 = f 1 ( x 1 , t 1 ) \frac{\partial F_1(x_1,t_1)}{\partial x_1}=f_1(x_1,t_1) ∂x1∂F1(x1,t1)=f1(x1,t1)
-
三、随机过程的数字特征
均值: a ( t ) = E [ ξ ( t ) ] = ∫ − ∞ ∞ x f 1 ( x , t ) d x a(t)=E[\xi(t)]=\int_{-\infty}^\infty xf_1(x,t)dx a(t)=E[ξ(t)]=∫−∞∞xf1(x,t)dx
- 是时间t的函数
- 表示随机过程的n个样本函数曲线的摆动中心
2.2 平稳随机过程
- 狭义平稳:其均值、均方值和方差均为常数,与时间无关,自相关函数只与时间间隔有关
- 广义平稳:一个二阶矩随机过程,它的均值为常数,自相关函数仅是时间间隔的函数,则称它为宽平稳随机过程或广义平稳随机过程。
2.3 高斯随机过程
-
一、高斯随机过程的基本概念
- 若随机过程 ξ ( t ) \xi (t) ξ(t)的任意n维分布都是正态分布,则称它为高斯随机过程或正态过程。
- 高斯过程的n维分布完全由n个随机变量的数学期望、 方差和两两之间的归一化协方差函数所决定。因此,对于高斯过程,只要研究它的数字特征就可以了。
-
二、误差函数和互补函数
-
误差函数—— e r f ( x ) = 2 x ∫ 0 x e − t 2 d t erf(x)=\frac{2}{\sqrt{x}} \int_0^x e^{-{t^2}}dt erf(x)=x2∫0xe−t2dt
自变量的递增函数
e r f ( 0 ) = 0 erf(0)=0 erf(0)=0 e r f ( ∞ ) = 1 erf(\infty)=1 erf(∞)=1
e r f ( − x ) = − e r f ( x ) erf(-x)=-erf(x) erf(−x)=−erf(x)
-
互补误差函数—— e r f c ( x ) = 1 − e r f ( x ) = 2 x ∫ x ∞ e − t 2 d t erfc(x)= 1- erf(x) =\frac{2}{\sqrt{x}} \int_x^{\infty} e^{-{t^2}}dt erfc(x)=1−erf(x)=x2∫x∞e−t2dt
自变量的递减函数
e r f c ( 0 ) = 1 erfc(0)=1 erfc(0)=1 e r f c ( ∞ ) = 0 erfc(\infty) = 0 erfc(∞)=0
e r f c ( − x ) = 2 − e r f c ( x ) erfc(-x)=2-erfc(x) erfc(−x)=2−erfc(x)
-
e r f c ( x ) + e r f ( x ) = 1 erfc(x)+erf(x)=1 erfc(x)+erf(x)=1
-
2.4 高斯白噪声
- 白噪声——它的功率谱密度均匀分布在整个频率范围内
- 是一个理想的宽带过程
- n 0 n_0 n0为一个常数,单位是瓦/赫
- 高斯白噪声
- 如果白噪声又是高斯分布的,我们就称之为高斯白噪声
第三章 信道与噪声
3.1 信道分类
-
狭义信道——信号的物理传输媒质
-
广义信道——信号的传输信道(传输系统)
广义信道按照它包括的功能,可以分为调制信道、编码信道
- 调制信道——当研究调制与解调问题时,我们所关心的是调制器输出的信号形式、解调器输入端信号与噪声的最终特性,而并不关心信号的中间变换过程。
- 编码信道——如果研究编码与译码问题时采用编码信道,会使问题的分析更容易。
3.2信道模型
-
一、调制信道模型
- 有一对(或多对)输入端和一对(或多对)输出端;
- 绝大多数的信道都是线性的 ,即满足线性叠加原理;
- 信号通过信道具有固定的或时变的延迟时间;
- 信号通过信道会受到固定的或时变的损耗;
- 即使没有信号输入,在信道的输出端仍可能有一定的输出(噪声)。
模型——线性时变网络
-
二、调制信道的输入与输出
-
二对端的调制信道模型,其输出与输入的关系有
r ( t ) = s 0 ( t ) + n ( t ) = f [ s i ( t ) ] + n ( t ) r(t)=s_0(t) +n(t) = f[s_i(t)]+n(t) r(t)=s0(t)+n(t)=f[si(t)]+n(t)
其中 s 0 ( t ) s_0(t) s0(t)是调制信道对输入信号的响应输出波形, n ( t ) n(t) n(t)为加性噪声,始终存在
f [ s i ( t ) ] f[s_i(t)] f[si(t)]反映了信道特性,不同的物理信道具有不同的特性
{ s o ( t ) = c ( t ) ∗ s i ( t ) = f [ s i ( t ) ] , S o ( w ) = C ( w ) S i ( w ) \begin{cases} s_o(t) = c(t)*s_i(t) = f[s_i(t)],\\ S_o(w) = C(w)S_i(w)\\ \end{cases} {so(t)=c(t)∗si(t)=f[si(t)],So(w)=C(w)Si(w)
其中 c ( t ) c(t) c(t)是乘性干扰,与信号共存共失
-
-
三、调制信道分类
-
根据信道传输函数的时变特性可以将调制信道分为两大类:
- 恒参信道—— C ( w ) C(w) C(w)基本不随时间变化,信道对信号的影响是固定的或变化极为缓慢的
- 随参信道——传输函数 C ( w ) C(w) C(w)随时间随机快变化
-
在常用物理信道中, C ( w ) C(w) C(w)的特性有三种典型形式:
-
加性高斯噪声信道—— C ( w ) C(w) C(w)是常数,或在信号频带范围内是常数。这类信道可以用加性噪声信道数学模型来表示
r ( t ) = s 0 ( t ) + n ( t ) = c s i ( t ) + n ( t ) r(t) = s_0(t)+n(t) = cs_i(t)+n(t) r(t)=s0(t)+n(t)=csi(t)+n(t)
-
带有加性噪声的线性滤波器信道—— C ( w ) C(w) C(w)在信号频带范围之内不是常数,但不随时间变化。该信道在数学上可表示为带有加性噪声的线性滤波器
r ( t ) = s 0 ( t ) + n ( t ) = c ( t ) ∗ s i ( t ) + n ( t ) r(t) = s_0(t) + n(t) = c(t)*s_i(t)+n(t) r(t)=s0(t)+n(t)=c(t)∗si(t)+n(t)
-
带有加性噪声的线性时变滤波器—— C ( w ) C(w) C(w)随时间变化,该信道在数学上可表示为带有加性噪声的线性时变滤波器,信道特性可以表征为时变单位冲激响应。
r ( t ) = s 0 ( t ) + n ( t ) = c ( t , τ ) ∗ s i ( t ) + n ( t ) r(t)=s_0(t)+n(t)=c(t,\tau)*s_i(t) + n(t) r(t)=s0(t)+n(t)=c(t,τ)∗si(t)+n(t)
-
-
-
四、编码信道模型
-
编码信道包括调制信道、调制器和解调器,它与调制信道模型有明显的不同,是一种数字信道或离散信道。
-
编码信道输入是离散的时间信号,输出也是离散的时间信号,对信号的影响则是将输入数字序列变成另一种输出数字序列。(映射)
-
由于信道噪声或其他因素的影响,将导致输出数字序列发生错误, 因此输入、输出数字序列之间的关系可以用一组转移概率来表征。
-
二进制编码信道模型
输出总的错误概率为: P e = P ( 0 ) P ( 1 ∣ 0 ) + P ( 1 ) P ( 0 ∣ 1 ) P_e = P(0)P(1|0)+P(1)P(0|1) Pe=P(0)P(1∣0)+P(1)P(0∣1)
-
3.3恒参信道的特性及其对信号传输的影响
恒参信道的信道特性不随时间变化或变化很缓慢。
-
一、恒参信道举例
同轴电缆
光纤
微波中继
卫星中继
-
二、恒参信道特性
-
恒参信道对信号传输的影响是确定的或者是变化极其缓慢的。因此其传输特性可以等效为一个线性时不变的网络。
-
线性网络的传输特性可以用幅度频率特性和相位频率特性来表征。
-
理想恒参信道特性: H ( w ) = K 0 e − j w t d H(w) = K_0 e^{-jwt_d} H(w)=K0e−jwtd , 其中 K 0 K_0 K0为传输系数, t d t_d td为时间延迟
{ ∣ H ( w ) ∣ = K 0 , φ ( w ) = w t d ⟺ τ ( w ) = d φ ( w ) d w = t d \begin{cases} |H(w)| = K_0,\\ \varphi(w) = wt_d \iff \tau(w) = \frac{d\varphi(w)}{dw} = t_d\\ \end{cases} {∣H(w)∣=K0,φ(w)=wtd⟺τ(w)=dwdφ(w)=td
理想信道的幅频特性、相频特性和群延迟-频率特性
-
理想恒参信道的冲激响应为 h ( t ) = K 0 δ ( t − t d ) h(t) = K_0\delta(t - t_d) h(t)=K0δ(t−td),若输入信号是 s ( t ) s(t) s(t),则理想恒参信道的输出为 r ( t ) = K 0 s ( t − t d ) r(t) = K_0s(t-t_d) r(t)=K0s(t−td)
-
理想恒参信道对信号传输的影响是:
- 对信号在幅度上产生固定的衰减;
- 对信号在时间上产生固定的迟延
- ——这种情况也称信号是无失真传输
-
三、幅频失真
- 如果信道的幅度-频率特性在信号频带范围内不是常数,则会使信号产生幅度-频率失真
- 幅度-频率失真是由实际信道的幅度频率特性的不理想所引起的,这种失真又称为频率失真,属于线性失真
- 信道的幅度-频率特性不理想会使通过它的信号波形产生失真,若在这种信道中传输数字信号,则会引起相邻数字信号波形之间在时间上的相互重叠,造成码间干扰。
-
四、相位-频率失真
- 当信道的相位-频率特性偏离线性关系时,将会使通过信道的信号产生相位-频率失真,属于线性失真。
- 在话音传输中,由于人耳对相频失真不太敏感,因此相频失真对模拟话音传输影响不明显。
- 如果传输数字信号,相频失真同样会引起码间干扰,特别当传输速率较高时,相频失真会引起严重的码间干扰,使误码率性能降低。
3.4 随参信道的特性及其对信号传输的影响
-
一、随参信道举例
- 陆地移动信道
- 短波电离层反射信道
-
二、随参信道特性
- 对信号的衰减随时间而变化
- 传输的时延随时间而变化
- 多径传播
-
- 多径传播使单一频率的正弦信号变成了包络和相位受调制的窄带信号,这种信号称为衰落信号,即多径传播使信号产生瑞利型衰落;
- 多径传播使单一谱线变成了窄带频谱,即多径传播引起了频率弥散。
-
三、相干带宽
多径传播时的相对时延差通常用最大多径时延差来表征。
- 设信道最大多径时延差为 Δ τ m \Delta \tau_m Δτm
- 则定义多径传播信道的相关带宽为 B c = 1 Δ τ m B_c = \frac{1}{\Delta\tau_m} Bc=Δτm1
- 它表示信道传输特性相邻两个零点之间的频率间隔.
- 如果信号的频谱比相关带宽宽,则将产生严重的频率选择性衰落。
- 为了减小频率选择性衰落,就应使信号的频谱小于相关带宽。
- 在工程设计中,为了保证接收信号质量,通常选择信号带宽为相关带宽的1/5~1/3.
- 当在多径信道中传输数字信号时,特别是传输高速数字信号,频率选择性衰落将会引起严重的码间干扰
3.5 信道加性噪声
-
一、噪声分类
-
单频噪声——是一种连续波干扰
-
脉冲噪声——是在时间上无规则的突发脉冲波形
- 脉冲噪声的特点是以突发脉冲形式出现、干扰持续时间短、脉冲幅度大。
- 包括工业干扰中的电火花、汽车点火噪声、雷电等。
- 由于脉冲很窄,所以其频谱很宽。
- 可以通过选择合适的工作频率、远离脉冲源等措施减小和避免脉冲噪声的干扰。
-
起伏噪声
- 包括热噪声、散弹噪声和宇宙噪声。
- 起伏噪声的特点是具有很宽的频带,并且始终存在,它是影响通信系统性能的主要因素。
- 通常情况下将热噪声按白噪声处理。
-
高斯白噪声
- 热噪声、散弹噪声和宇宙噪声这些起伏噪声都可以认为是一种高斯噪声,且功率谱密度在很宽的频带范围都是常数。因此,起伏噪声通常被认为是近似高斯白噪声。
- 高斯白噪声的双边功率谱密度为: P n ( f ) = n 0 2 ( W / H z ) P_n(f) = \frac{n_0}{2}(W/Hz) Pn(f)=2n0(W/Hz)
- 其自相关函数为: R n ( τ ) = n 0 2 δ ( τ ) R_n(\tau) = \frac{n_0}{2} \delta(\tau) Rn(τ)=2n0δ(τ)
- 其一维概率密度函数为: f n ( v ) = 1 2 π σ n e x p ( − v 2 2 σ n 2 ) f_n(v)=\frac{1}{\sqrt{2\pi} \sigma_n}exp(-\frac{v^2}{2\sigma^2_n}) fn(v)=2πσn1exp(−2σn2v2)
-
高斯噪声通过线性系统
- 一个通信系统的线性部分可以用线性网络来描述,通常具有带通特性。
- 当宽带起伏噪声通过带通特性网络时, 输出噪声就变为带通型噪声。如果线性网络具有窄带特性,则输出噪声为窄带噪声。
-
带限白噪声
-
1、低通型
S x ( w ) = { S 0 ∣ w ∣ ≤ W 0 ∣ w ∣ > W S_x(w) = \begin{cases} S_0 & |w| \leq W \\ 0 & |w| > W \\ \end{cases} Sx(w)={S00∣w∣≤W∣w∣>W- 低通型限带白噪声的自相关函数为
KaTeX parse error: Expected 'EOF', got '&' at position 12: R_x(\tau) &̲ = \frac{1}{2\p…
- 低通型限带白噪声的自相关函数为
- 2、带通型
S x ( w ) = { S 0 w 0 − W 2 < ∣ w ∣ < w 0 + W 2 0 其他 S_x(w) = \begin{cases} S_0 & w_0 - \frac{W}{2}< |w| < w_0 + \frac{W}{2}\\ 0 & \text{其他} \\ \end{cases} Sx(w)={S00w0−2W<∣w∣<w0+2W其他
-
-
3.6 信道容量
-
香农公式
-
带宽为B(Hz)的连续信道,其输入信号为x(t),信道加性高斯白噪声为n(t),则信道输出为
y(t) = x(t) + n(t)
-
输入信号的功率为S;信道噪声的功率为N, n ( t ) n(t) n(t)的均值为零,方差为 σ n 2 \sigma_n^2 σn2 ,单边功率谱密度为 n 0 n_0 n0
-
C = B l o g 2 ( 1 + S n 0 B ) ( b / s ) C = Blog_2(1 + \frac{S}{n_0B})(b/s) C=Blog2(1+n0BS)(b/s)
-
N = n 0 B N = n_0B N=n0B
-
香农公式表明的是当信号与信道加性高斯白噪声的平均功率给定时,在具有一定频带宽度的信道上,理论上单位时间内可能传输的信息量的极限数值。
-
-
香农公式的结论
-
只要传输速率小于等于信道容量,则总可以找到一种信道编码方式,实现无差错传输;若传输速率大于信道容量,则不可能实现无差错传输。
-
增大信号功率S可以增加信道容量C,若信号功率趋于无穷大,则信道容量也趋于无穷大。
-
减小噪声功率S,N可以增加信道容量,若噪声功率趋于零,则信道容量趋于无穷大。
-
增大信道带宽B可以增加信道容量,但不能使信道容量无限制增大。信道带宽B趋于无
穷大时,信道容量的极限值为
-
第四章、 模拟调制系统
引言:
- 调制的目的分类
- 目的:将原始电信号变换成频带适合信道传输的信号。匹配信道特性,减小天线尺寸,提高辐射效率。实现带宽与信噪比的互换(有效性与可靠性)
- 本质:调制的本质就是频谱搬移
- 方式:按调制信号的变化规律去改变载波的某些参数。控制载波的幅度就是调幅,控制载波的频率就是调频。
- 作用(正弦波调制)
- 将调制信号(基带信号)转换成适合于信道传输的已调信号(频带信号);
- 实现信道的多路复用,提高信道利用率
- 减小干扰,提高系统的抗干扰能力
- 实现传输带宽与信噪比之间的转换
- 调制信号:原始基带信号
- 模拟调制:调制信号取值连续
- 数字调制:调制信号取值离散
- 载波:携带调制信号的信号
- 正弦波调制:正弦信号作为载波
- 脉冲调制:脉冲串作为载波
4.1 线性调制的原理
-
幅度调制(线性调制)是用调制信号去控制高频载波的振幅,使其按调制信号的规
律而变化的过程。 -
相干解调也叫同步检波,它适用于所有线性调制信号的解调。实现相干解调的关键是接收端要恢复出一个与调制载波严格同步的相干载波。
相干解调是指利用乘法器,输入一路与载频相干(同频同相)的参考信号与载频相乘。
-
分类:
-
调幅(AM)
-
双边带抑制载波调幅(DSB-SC)
-
单边带调制(SSB)
-
残留边带调制(VSB)
-
4.2 角度调制(非线性调制)的基本原理
-
使高频载波的频率或相位按调制信号的规律变化而振幅保持恒定的调制方式,称为频率调制(FM)和相位调制(PM), 分别简称为调频和调相。
-
因为频率或相位的变化都可以看成是载波角度的变化,故调频和调相又统称为角度调制。
-
由于频率和相位之间存在微分与积分的关系,故调频与调相之间存在密切的关系,即调频必调相,调相必调频。
-
一、角度调制的基本概念
-
角度调制的一般表达式为: S m ( t ) = A c o s [ w c t + φ ( t ) ] S_m(t) = Acos[w_ct + \varphi(t)] Sm(t)=Acos[wct+φ(t)]
其中A为恒定振幅, θ ( t ) = [ w c t + φ ( t ) ] \theta(t)=[w_ct+\varphi(t)] θ(t)=[wct+φ(t)]为瞬时相位
w c t w_ct wct——载波相位 w c w_c wc——载波角频率
φ ( t ) \varphi(t) φ(t)——相对于载波相位的瞬时相位偏移
d [ w c t + φ ( t ) ] d t \frac{d[w_ct+\varphi(t)]}{dt} dtd[wct+φ(t)]——瞬时角频率
d φ ( t ) d t \frac{d\varphi(t)}{dt} dtdφ(t)——瞬时角频偏
-
相位调制PM:是指瞬时相位偏移随调制信号m(t)而线性变化。 φ ( t ) = K p m ( t ) \varphi(t)=K_pm(t) φ(t)=Kpm(t)
调相信号可表示为: S P M ( t ) = A c o s [ w c t + K p m ( t ) ] S_{PM}(t)=Acos[w_ct+K_pm(t)] SPM(t)=Acos[wct+Kpm(t)]
-
频率调制FM:是指瞬时角频率偏移随调制信号m(t)而线性变化。
d φ ( t ) d t = K f m ( t ) ⟹ φ ( t ) = K f ∫ − ∞ t m ( τ ) d τ \frac{d\varphi(t)}{dt}=K_fm(t) \implies \varphi(t)=K_f\int_{-\infty}^{t}m(\tau)d\tau dtdφ(t)=Kfm(t)⟹φ(t)=Kf∫−∞tm(τ)dτ
-
-
二、FM参数与带宽
-
FM带宽
卡森公式: B F M = 2 ( m f + 1 ) f m = s Δ f + 2 f m B_{FM}=2(m_f+1)f_m = s\Delta f+2f_m BFM=2(mf+1)fm=sΔf+2fm
-
-
三、FM特点
包络恒定
非线性调制
优势:抗噪能力强
代价:占用较大信道带宽,频谱利用率低
-
四、性能比较
第五章 数字基带传输系统
5.1 数字基带传输概述
-
一、研究数字基带传输系统的意义
- 来自数据终端的原始数据信号,往往包含丰富的低频分量,甚至直流分量,因而称之为数字基带信号。
- 在某些具有低通特性的有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传输, 我们称之为数字基带传输。
- 而大多数信道,如各种无线信道和光信道, 则是带通型的, 数字基带信号必须经过载波调制,把频谱搬移到高载处才能在信道中传输,我们把这种传输称为数字频带(调制或载波)传输。
-
二、数字基带传输系统的结构
-
s ( t ) s(t) s(t)是 a n {a_n} an对应的电波形,不适合直接在信道中传输
-
各部分的作用
-
信道信号形成器——
- 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的,其目的是与信道匹配, 便于传输,减小码间串扰,利于同步提取和抽样判决。
-
接收滤波器——
- 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决
-
抽样判决器——
- 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取,位定时的准确与否将直接影响判决效果。
-
5.2 数字基带信号及其频谱特性
-
基带信号的时域波形
-
1、单极性不归零波形
-
2、双极性不归零波形
-
3、单极性归零波形
-
4、双极性归零波形
-
5、差分波形
-
这种波形不是用码元本身的电平表示消息代码, 而是用相邻码元的电平的跳变和不变来表示消息代码
◼ 分为:传号差分波(1变,0不变)
◼ 空号差分波(1不变,0变)
-
第六章、模拟信号的数字传输
6.1 抽样定理
-
抽样是把时间上连续的模拟信号变成一系列时间上离散的抽样值的过程。
-
对一个频带有限的时间连续的模拟信号抽样,当抽样速率达到一定数值时,那么根据它的抽样值就能重建原信号。也就是说,若要传输模拟信号,不一定要传输模拟信号本身,只需传输按抽样定理得到的抽样值即可。因此,抽样定理是模拟信号数字化的理论依据。
-
低通抽样定理
-
一个频带限制在 ( 0 , f H ) (0,f_H) (0,fH)赫兹内地时间连续信号m(t)
-
如果以$T_S \leq 1/2f_H $秒的间隔对它进行等间隔(均匀)抽样,则m(t)将被所得到的抽样值完全确定。
-
T s = 1 2 f H T_s = \frac{1}{2f_H} Ts=2fH1——奈奎斯特间隔,是最大允许的抽样间隔
-
f s = 2 f H f_s=2f_H fs=2fH——奈奎斯特速率
-
-
带通抽样定理
6.2 脉冲振幅调制
- 脉冲调制就是以时间上离散的脉冲串作为载波,用模拟基带信号m(t)去控制脉冲串的某参数,使其按m(t)的规律变化。
- 按基带信号改变脉冲参量的不同,把脉冲调制又分为
- 脉幅调制(PAM)
- 是脉冲载波的幅度随基带信号变化的一种调制方式
- 若脉冲载波是冲激脉冲序列,则前面讨论的抽样定理就是脉冲振幅调制的原理
- 脉宽调制(PDM)
- 脉位调制(PPM)
- 脉幅调制(PAM)
6.3 脉冲编码调制(PCM)
-
脉冲编码调制(PCM)简称脉码调制,它是一种用一组二进制数字代码来代替连续信号的抽样值,从而实现通信的方式。
-
PCM是一种典型的语音信号数字化的波形编码方式。
-
抽样是按抽样定理把时间上连续的模拟信号转换成时间上离散的抽样信号;
-
量化是把幅度上仍连续(无穷多个取值)的抽样信号进行幅度离散,即指定M个规定的电平,把抽样值用最接近的电平表示;
-
编码是用二进制码组表示量化后的M个样值脉冲。
-
PCM信号的形成是模拟信号经过“抽样、量化、编码”三个步骤实现的。
-
一、量化
- 利用预先规定的有限个电平来表示模拟信号抽样值的过程称为量化。
- 对模拟抽样值的量化过程会产生误差,称为量化误差,通常用均方误差来度量。
- 由于这种误差的影响相当于干扰或噪声,故又称其为量化噪声。
-
二、均匀量化
- 把输入信号的取值域按等距离分割的量化称为均匀量化。
- 在均匀量化中,每个量化区间的量化电平均取在各区间的中点。
- 在衡量系统性能时应看噪声与信号的相对大小。
-
三、编码和译码
- 把量化后的信号电平值变换成二进制码组的过程称为编码
- 其逆过程称为解码或译码。
- 对于M个量化电平,可以用N位二进制码来表示,其中的每一个码组称为一个码字
- 在PCM中常用的二进制码型有三种:
- 自然二进码
- 格雷二进码
- 折叠二进码
第七章、数字频带传输系统
7.1 二进制数字调制与解调原理
-
若调制信号是二进制数字基带信号时,这种调制称为二进制数字调制
-
最常用的二进制数字调制有:
- 二进制振幅键控(2ASK)
- 二进制移频键控(2FSK)
- 二进制移相键控(2PSK、DPSK)
-
一、二进制振幅键控(2ASK)
- 振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制。
-
二、二进制移频键控(2FSK)
- 若正弦载波的频率随二进制基带信号在和两个频率点 f 1 和 f 2 f_1和f_2 f1和f2之间变化,则产生二进制移频键控信号(2FSK)
-
三、二进制移相键控(2PSK)
- 在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号
- 通常用已调信号载波的 0°和 180°分别表示二进制数字基带信号的“ 1” 和 “0”。
7.2 二进制数字调制系统的性能比较