题目描述
现有 2n×2n(n≤10) 名作弊者站成一个正方形方阵等候 kkksc03 的发落。kkksc03 决定赦免一些作弊者。他将正方形矩阵均分为 4 个更小的正方形矩阵,每个更小的矩阵的边长是原矩阵的一半。其中左上角那一个矩阵的所有作弊者都将得到赦免,剩下 3 个小矩阵中,每一个矩阵继续分为 4 个更小的矩阵,然后通过同样的方式赦免作弊者……直到矩阵无法再分下去为止。所有没有被赦免的作弊者都将被处以棕名处罚。
给出 n,请输出每名作弊者的命运,其中 0 代表被赦免,1 代表不被赦免。
输入格式
一个整数 n。
输出格式
2n×2n 的 01 矩阵,代表每个人是否被赦免。数字之间有一个空格。
输入输出样例
输入
3
输出
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1
//找规律+模拟
//每一个数字是上方数字与右上方数字之和模2
//可以直接异或
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n;
int a[1234][1234];
int main()
{
scanf("%d",&n);
n=(1<<n);
a[0][n+1]=1;
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
a[i][j]=a[i-1][j]^a[i-1][j+1];
printf("%d ",a[i][j]);
}
printf("\n");
}
return 0;
}
或
//位运算:f(i,j)=((i|j)!=((1<<n)-1)?0:1);
#include<bits/stdc++.h>
using namespace std;
int n;
int main()
{
scanf("%d",&n);
for(int i=0;i<(1<<n);i++)
{
for(int j=0;j<(1<<n);j++)
{
printf("%d ",(i|j)!=((1<<n)-1)?0:1);
}
printf("\n");
}
return 0;
}
或
//分治+递归
#include<bits/stdc++.h>
using namespace std;
int n,p=1,a[1050][1050];
void di(int x,int l,int q) //x为正方形边长,l,q分别为递归正方形的横纵坐标
{
if(x==2)
{
a[l][q]=0;
return;
}
for(int i=l;i<=l+x/2-1;i++)
{
for(int j=q;j<=q+x/2-1;j++)
{
a[i][j]=0;
}
}
di(x/2,l+x/2,q);
di(x/2,l+x/2,q+x/2);
di(x/2,l,q+x/2);
}
int main()
{
cin>>n;
p=pow(2,n);
for(int i=1;i<=p;i++)
{
for(int j=1;j<=p;j++)
{
a[i][j]=1;
}
}
di(p,1,1);
for(int i=1; i<=p; i++)
{
for(int j=1; j<=p-1; j++)//避免输出行尾空格
{
cout<<a[i][j]<<" ";
}
cout<<a[i][p]<<endl;
}
return 0;
}
或
//打表
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
int a[12][1025][1025];
int main()
{
a[1][1][1]=0;
a[1][1][2]=1;
a[1][2][1]=1;
a[1][2][2]=1;
for(int k=2;k<=10;k++)
{
int q=pow(2,k);
for(int i=1;i<=q/2;i++)
{
for(int j=1;j<=q/2;j++)
{
a[k][i][j]=0;
}
}
for(int i=1;i<=q/2;i++)
{
for(int j=q/2+1;j<=q;j++)
{
a[k][i][j]=a[k-1][i][j-q/2];
}
}
for(int i=q/2+1;i<=q;i++)
{
for(int j=1;j<=q;j++)
{
if(j%(q/2))
{
a[k][i][j]=a[k-1][i-q/2][j%(q/2)];
}
else a[k][i][j]=a[k-1][i-q/2][q/2];
}
}
}
int n;
scanf("%d",&n);
int p=pow(2,n);
for(int i=1;i<=p;i++)
{
for(int j=1;j<=p;j++)
{
printf("%d ",a[n][i][j]);
}
printf("\n");
}
return 0;
}
或