赦免战俘

题目描述

现有 2n×2n(n≤10) 名作弊者站成一个正方形方阵等候 kkksc03 的发落。kkksc03 决定赦免一些作弊者。他将正方形矩阵均分为 4 个更小的正方形矩阵,每个更小的矩阵的边长是原矩阵的一半。其中左上角那一个矩阵的所有作弊者都将得到赦免,剩下 3 个小矩阵中,每一个矩阵继续分为 4 个更小的矩阵,然后通过同样的方式赦免作弊者……直到矩阵无法再分下去为止。所有没有被赦免的作弊者都将被处以棕名处罚。
给出 n,请输出每名作弊者的命运,其中 0 代表被赦免,1 代表不被赦免。

输入格式

一个整数 n。

输出格式

2n×2n 的 01 矩阵,代表每个人是否被赦免。数字之间有一个空格。

输入输出样例

输入

3 

输出

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1
//找规律+模拟
//每一个数字是上方数字与右上方数字之和模2
//可以直接异或 
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n;
int a[1234][1234];
int main()
{
    scanf("%d",&n);
    n=(1<<n);
    a[0][n+1]=1;
    for(int i=1;i<=n;++i)
    {
  	for(int j=1;j<=n;++j)
  	{
            a[i][j]=a[i-1][j]^a[i-1][j+1];
            printf("%d ",a[i][j]);
  	}
  	printf("\n");
    }
    return 0;
}

//位运算:f(i,j)=((i|j)!=((1<<n)-1)?0:1);
#include<bits/stdc++.h>
using namespace std;
int n;
int main()
{
    scanf("%d",&n);
    for(int i=0;i<(1<<n);i++)
    {
  	for(int j=0;j<(1<<n);j++)
  	{
            printf("%d ",(i|j)!=((1<<n)-1)?0:1);
  	}
  	printf("\n");
    }
    return 0;
}

//分治+递归
#include<bits/stdc++.h>
using namespace std;
int n,p=1,a[1050][1050];
void di(int x,int l,int q) //x为正方形边长,l,q分别为递归正方形的横纵坐标 
{
    if(x==2)
    {
  	a[l][q]=0;
  	return;
    } 
    for(int i=l;i<=l+x/2-1;i++)
    {
  	for(int j=q;j<=q+x/2-1;j++)
  	{
            a[i][j]=0;
        }
    }
    di(x/2,l+x/2,q);
    di(x/2,l+x/2,q+x/2);
    di(x/2,l,q+x/2);
} 
int main()
{
    cin>>n;
    p=pow(2,n);
    for(int i=1;i<=p;i++)
    {
  	for(int j=1;j<=p;j++)
  	{
            a[i][j]=1;
  	}
    }
    di(p,1,1);
    for(int i=1; i<=p; i++)
    {
  	for(int j=1; j<=p-1; j++)//避免输出行尾空格
     	{
            cout<<a[i][j]<<" ";
  	}
  	cout<<a[i][p]<<endl; 
    }
    return 0;
}

//打表 
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
int a[12][1025][1025];
int main()
{
    a[1][1][1]=0;
    a[1][1][2]=1;
    a[1][2][1]=1;
    a[1][2][2]=1;
    for(int k=2;k<=10;k++)
    {
  	int q=pow(2,k);
  	for(int i=1;i<=q/2;i++)
  	{
            for(int j=1;j<=q/2;j++)
            {
    		a[k][i][j]=0;
            }
  	}
  	for(int i=1;i<=q/2;i++)
 	{
            for(int j=q/2+1;j<=q;j++)
            {
    		a[k][i][j]=a[k-1][i][j-q/2];
            }
  	}
  	for(int i=q/2+1;i<=q;i++)
  	{
            for(int j=1;j<=q;j++)
            {
     		if(j%(q/2))
     		{ 
                    a[k][i][j]=a[k-1][i-q/2][j%(q/2)];
    		} 
    		else a[k][i][j]=a[k-1][i-q/2][q/2];
   	    }
  	}
    }
    int n;
    scanf("%d",&n);
    int p=pow(2,n);
    for(int i=1;i<=p;i++)
    {
  	for(int j=1;j<=p;j++)
  	{
            printf("%d ",a[n][i][j]);
  	}
  	printf("\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【执珪】瑕瑜·夕环玦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值