VO(Visual Odometry)
文章平均质量分 94
视觉里程计是一种利用连续的图像序列来估计机器人移动距离的方法。
huarzail
AI工程师,主要研究方向:隐式VSLAM、双目立体匹配。
展开
-
UnDeepVO: Monocular Visual Odometry through Unsupervised Deep Learning
对于单目VISO2-M和没有环路闭合的ORB-SLAM,它们无法使用我们的输入设置(图像分辨率416×128),因此我们提供了这两个系统在高分辨率1242×376下的结果。图1展示了系统概述。我们的UnDeepVO的一个特点是恢复6自由度姿态和深度的绝对尺度,这要归功于我们的训练方案,如图3所示。然后,我们使用输入的立体图像、估计的深度图像和6自由度姿态构建损失函数,考虑立体相机组的几何关系。在过去的几十年里,基于模型的VO或几何VO得到了广泛研究,其两种范式,基于特征的方法和直接方法,都取得了巨大成功。原创 2023-08-29 18:02:37 · 305 阅读 · 1 评论 -
DeepVO项目实践-基于ChiWeiHsiao/DeepVO-pytorch版本
DeepVO方法应该是第一个采用LSTM方法来实现视觉里程计的方法,具有里程碑的意义。由于作者没有开源,感谢很多大佬复现了他的方法,如ChiWeiHsiao复现了DeepVO方法,github上取名为:DeepVO-pytorch。本文对DeepVO-pytorch的部署进行了简单介绍。原创 2023-07-17 19:05:44 · 973 阅读 · 18 评论 -
DeepVO:通过深度循环卷积神经网络实现端到端的视觉里程计
使用深度递归卷积神经网络(RCNNG),提出了一种新颖的端到端单目VO的框架。由于它是以端到端的方式进行训练和配置的,因此它可以直接从一系列原始的RGB图像(视频)中计算得到姿态,而无需采用任何传统VO框架中的模块。原创 2023-07-16 18:23:03 · 1739 阅读 · 2 评论