混淆矩阵-python

本文深入探讨了混淆矩阵在Python中的使用,详细解释了每个术语,如真正例、假正例、真负例和假负例,并通过实例展示了如何在实际分类任务中计算和解读混淆矩阵。
摘要由CSDN通过智能技术生成
conf_mat=np.zeros([5, 5])
# 先定义一个空的混淆矩阵
print("以下是输出的预测值和标签值")
            print("预测值为:"+str(out_spikes_counter.max<
混淆矩阵图是一种展示分类模型性能的可视化工具,用于比较有监督学习模型在多类别任务中的分类结果。在Python中,可以使用各种数据科学和机器学习库来生成和绘制混淆矩阵图,如matplotlib和seaborn。 首先,需要导入所需的库,并将真实标签和预测标签作为输入数据。可以使用sklearn库中的metrics模块来计算混淆矩阵。 ```Python import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics # 真实标签和预测标签 y_true = [0, 1, 0, 1, 2, 0, 2, 2] y_pred = [0, 1, 0, 2, 1, 0, 2, 1] # 计算混淆矩阵 confusion_matrix = metrics.confusion_matrix(y_true, y_pred) ``` 接下来,可以使用seaborn库的heatmap函数将混淆矩阵可视化。 ```Python # 绘制混淆矩阵图 plt.figure(figsize=(8, 6)) sns.heatmap(confusion_matrix, annot=True, cmap="Blues") # 添加轴标签 plt.xlabel("预测标签") plt.ylabel("真实标签") plt.title("混淆矩阵图") # 显示图形 plt.show() ``` 以上代码将生成一个具有颜色编码单元格和数字注释的矩形热图。行表示真实标签,列表示预测标签。热图的纵向表示了预测标签的准确性和误判情况,横向表示了真实标签的分布情况。注释数字表示每个类别的样本数。根据颜色的深浅可以观察到每个类别的分类情况,以及模型的整体性能。 通过混淆矩阵图,我们可以直观地了解分类模型在每个类别上的表现,并进一步优化模型以提高分类性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值