机器学习基础——术语


今天开始学习西瓜书哦。。。。

基本术语

机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”(model)的算法,即“学习算法”(learning algorithm)


数据集(data set):这组记录的集合称为一个“数据集”,其中每条记录是关于一个事件或对象。

这个过程通过执行某个学习算法来完成,训练过程中使用的数据称为“训练数据”(training data),其中每个样本称为一个“训练样本”(training sample),训练样本组成的集合称为“训练集”(training set)

学习器”:可以看作学习算法在给定数据和参数空间上的实例化。

预测的连续值的学习任务称为回归

涉及多个类别时,则称为多分类(multi-class classification)任务

学的模型后,使用其进行预测的过程称为“测试”,被预测的样本称为测试样本(testing smaple)

学习的任务可大致分为两大类:监督学习(supervised learning)和无监督学习(unsupervised learning)。分类和回归是前者的代表,聚类则是后者的代表。

通常假设样本空间中全体样本服从一个未知分布(distribution) D \mathcal{D} D,我们获得每个样本都是独立的从这个样本上采样获得的,即独立同分布(independent and identity distribution,简称 i . i . d i.i.d i.i.d


假设空间

归纳(induction)与演绎(deduction)是科学推理的两大基本手段。

前者是从一个特殊到一般的“泛化”(generalization)过程,即从具体的事实归纳出一般的规律

后者是从一般到特殊的泛化(specialization)过程,即从基础原理推演出具体状况。
在这里插入图片描述
我们可以把学习过程看作是一个在所有假设(hypothesis)组成的空间进行搜索的过程,搜索目标是找到与训练集匹配的假设。

在这里插入图片描述


归纳偏好

机器学习算法在学习过程中对某种类型假设的偏好,称为“归纳偏好(inductive bias)”或简称为“偏好”在这里插入图片描述
假设学习算法 L a \mathfrak{L}_a La基于某种归纳偏好产生了对应于曲线A的模型,学习算法 L b \mathfrak{L}_b Lb基于某种归纳偏好产生了对应于曲线B的模型。
∑ f E o t e ( L a ∣ X , f ) = ∑ f ∑ h ∑ x ∈ X − X P ( x ) I ( h ( x ) ≠ f ( x ) ) P ( h ∣ X , L a ) = ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) ∑ f I ( h ( x ) ≠ f ( x ) ) = ∑ x ∈ X − x P ( x ) ∑ h P ( h ∣ X , L a ) 1 2 2 ∣ X ∣ = 1 2 2 ∣ X ∣ ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) = 2 ∣ X ∣ − 1 ∑ x ∈ X − X P ( x ) ⋅ 1 \begin{aligned} \sum_{f}E_{ote}(\mathfrak{L}_a|X,f) & = \sum_{f}\sum_h\sum_{x\in\mathcal{X}-X}P(x)\mathbb{I}(h(x)\ne f(x))P(h|X,\mathfrak{L}_a) \\ & = \sum_{x\in\mathcal{X}-X}P(x)\sum_hP(h|X,\mathfrak{L}_a)\sum_f \mathbb{I}(h(x)\ne f(x)) \\ & =\sum_{x\in \mathcal{X}-x}P(x)\sum_h P(h|X,\mathfrak{L}_a)\frac{1}{2}2^{|\mathcal{X}|} \\& = \frac{1}{2} 2^{|\mathcal{X}|}\sum_{x\in \mathcal{X}-X}P(x)\sum_h P(h|X,\mathfrak{L}_a) \\ &= 2^{|\mathcal{X}|-1}\sum_{x\in \mathcal{X}-X}P(x)\cdot 1 \end{aligned} fEote(LaX,f)=fhxXXP(x)I(h(x)̸=f(x))P(hX,La)=xXXP(x)hP(hX,La)fI(h(x)̸=f(x))=xXxP(x)hP(hX,La)212X=212XxXXP(x)hP(hX,La)=2X1xXXP(x)1
f f f的定义为任何能将样本映射到 { 0 , 1 } \{0,1\} {0,1}的函数均匀分布,也不止一个 f f f且每个 f f f出现的概率相等,例如样本空间只有两个样本时: X = { x 1 , x 2 } , ∣ X ∣ = 2 \mathcal{X}=\{x_1,x_2\},|\mathcal{X}|=2 X={x1,x2},X=2,那么所有的真实目标函数 f f f为:
f 1 : f 1 ( x 1 ) = 0 f 1 ( x 2 ) = 0 f 2 : f 2 ( x 1 ) = 0 f 2 ( x 2 ) = 1 f 3 : f 3 ( x 1 ) = 1 f 3 ( x 2 ) = 0 f 4 : f 4 ( x 1 ) = 1 f 4 ( x 2 ) = 1 \begin{aligned} & f_1:f_1(x_1)=0\quad f_1(x_2)=0 \\ & f_2:f_2(x_1)=0\quad f_2(x_2)=1 \\ & f_3:f_3(x_1)=1\quad f_3(x_2)=0 \\ & f_4:f_4(x_1)=1\quad f_4(x_2)=1 \end{aligned} f1:f1(x1)=0f1(x2)=0f2:f2(x1)=0f2(x2)=1f3:f3(x1)=1f3(x2)=0f4:f4(x1)=1f4(x2)=1
一共 2 ∣ X ∣ = 2 2 = 4 2^{|\mathcal{X}|}=2^2=4 2X=22=4个真实的函数。所以此时通过算法 L a \mathfrak{L}_a La学习出来的模型 h ( x ) h(x) h(x)对每个样本无论预测值为0还是为1必然有一半的 f f f与之预测值相等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值