第T1周:实现mnist手写数字识别

前言

一、我的环境

  • 电脑系统:Windows 11
  • 语言环境:Python 3.9.7
  • 编辑器:Jupyter Lab

二、mnist手写数字识别代码实现

1.前期工作

1.1 导入数据

!pip install tensorflow

#导入数据
import tensorflow as tf
#layers模块包含了构建神经网络所需的各种层。
#models模块包含了构建和训练模型的工具。
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
#从Keras库中加载MNIST数据集
# 导入mnist数据,依次分别为训练集图片、训练集标签、测试集图片、测试集标签
#datasets.mnist.load_data()函数返回一个元组,其中包含两个元素:
#第一个元素是一个元组,包含训练集的图片和标签。
#第二个元素是一个元组,包含测试集的图片和标签。
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

1.2 归一化

数据归一化作用

● 使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确。
● 加快学习算法的收敛速度。

#归一化
# 将像素的值标准化至0到1的区间内。(对于灰度图片来说,每个像素最大值是255,每个像素最小值是0,也就是直接除以255就可以完成归一化。)
#使用了Python的链式赋值特性,直接在赋值时进行归一化操作
train_images, test_images = train_images / 255.0, test_images / 255.0
# 查看数据维数信息,.shape属性返回数组的维度。
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
"""
输出:((60000, 28, 28), (10000, 28, 28), (60000,), (10000,))
"""

1.3 可视化图片

#可视化图片
# 将数据集前20个图片数据可视化显示
# 进行图像大小为20宽、10长的绘图(单位为英寸inch)
plt.figure(figsize=(20,10))
# 遍历MNIST数据集下标数值0~49
for i in range(20):
    # 将整个figure分成5行10列,绘制第i+1个子图。
    plt.subplot(2,10,i+1)
    # 设置不显示x轴刻度
    plt.xticks([])
    # 设置不显示y轴刻度
    plt.yticks([])
    # 设置不显示子图网格线
    plt.grid(False)
    # 图像展示,cmap为颜色图谱,"plt.cm.binary"为matplotlib.cm中的色表
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # 设置x轴标签显示为图片对应的数字
    plt.xlabel(train_labels[i])
# 显示图片
plt.show()

在这里插入图片描述

1.3 调整图片格式

#调整图片格式
#调整数据到我们需要的格式
#添加的最后一个维度1是为了将图像数据转换为四维数组,这是许多深度学习框架(如TensorFlow和Keras)处理图像数据时所需的格式。
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))
#四维数组格式通常表示为(batch_size, height, width, channels),其中channels对于灰度图像是1,对于彩色图像是3。
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
"""
输出:((60000, 28, 28, 1), (10000, 28, 28, 1), (60000,), (10000,))
"""

2. 构建CNN网络模型

网络结构图:
在这里插入图片描述

#构建CNN网络模型
# 创建并设置卷积神经网络
# 卷积层:通过卷积操作对输入图像进行降维和特征抽取
# 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
# 全连接层:在经过几个卷积和池化层之后,神经网络中的高级推理通过全连接层来完成。
#Sequential模型用于线性堆叠层。
model = models.Sequential([
    # 设置二维卷积层1,设置32个3*3卷积核,activation参数将激活函数设置为ReLu函数,input_shape参数将图层的输入形状设置为(28, 28, 1)
    # ReLu函数作为激活励函数可以增强判定函数和整个神经网络的非线性特性,而本身并不会改变卷积层
    # 相比其它函数来说,ReLU函数更受青睐,这是因为它可以将神经网络的训练速度提升数倍,而并不会对模型的泛化准确度造成显著影响。
    #32表示有32个卷积核(过滤器)。(3, 3)表示每个卷积核的大小是3x3。
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    #池化层1,2*2采样
    layers.MaxPooling2D((2, 2)),                   
    # 设置二维卷积层2,设置64个3*3卷积核,activation参数将激活函数设置为ReLu函数
    layers.Conv2D(64, (3, 3), activation='relu'),  
    #池化层2,2*2采样
    layers.MaxPooling2D((2, 2)),                   
    #添加一个Flatten层,用于将前面卷积层的输出展平成一维数组,以便输入到全连接层。
    layers.Flatten(),                    #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'), #全连接层,特征进一步提取,64为输出空间的维数,activation参数将激活函数设置为ReLu函数
    layers.Dense(10)                     #输出层,输出预期结果,10为输出空间的维数
])
# 打印网络结构 包括每层的输出形状和参数数量
model.summary()

在这里插入图片描述

3. 编译模型

#编译模型
"""
这里设置优化器、损失函数以及metrics
"""
# model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准
model.compile(
	# 设置优化器为Adam优化器
    optimizer='adam',
	# 设置损失函数为交叉熵损失函数(tf.keras.losses.SparseCategoricalCrossentropy())
    # from_logits为True时,会将y_pred转化为概率(用softmax),否则不进行转换,通常情况下用True结果更稳定
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    # 设置性能指标列表,将在模型训练时监控列表中的指标
    metrics=['accuracy'])

4. 训练模型

#训练模型
"""
这里设置输入训练数据集(图片及标签)、验证数据集(图片及标签)以及迭代次数epochs
关于model.fit()函数的具体介绍可参考我的博客:
https://blog.csdn.net/qq_38251616/article/details/122321757
"""
history = model.fit(
    # 输入训练集图片
	train_images, 
	# 输入训练集标签
	train_labels, 
	# 设置10个epoch,每一个epoch都将会把所有的数据输入模型完成一次训练。
	epochs=10, 
	# 设置验证集
    validation_data=(test_images, test_labels))

在这里插入图片描述

5. 预测

通过下面的网络结构我们可以简单理解为,输入一张图片,将会得到一组数,这组代表这张图片上的数字为0~9中每一个数字的几率(并非概率),out数字越大可能性越大,仅此而已。
在这里插入图片描述

#预测
plt.imshow(test_images[1])

在这里插入图片描述

pre = model.predict(test_images) # 对所有测试图片进行预测
pre[1] # 输出第一张图片的预测结果

在这里插入图片描述

三、心得体会

卷积层、池化层和全连接层是构成卷积神经网络(CNN)的三种基本类型的层。

  1. 卷积层(Convolutional Layer)

    • 作用:卷积层是CNN中用于提取图像特征的关键层。它通过卷积操作在图像上滑动卷积核(或称为过滤器),从而提取局部特征。
    • 参数:卷积层的参数包括卷积核的数量、大小(如3x3、5x5等),以及激活函数(如ReLU)。
    • 特征提取:卷积层能够捕捉到图像中的边缘、纹理等特征,并生成特征图(feature maps)。
    • 局部连接:每个卷积核只与输入数据的一个局部区域相连接,这减少了模型的参数数量。
    • 共享权重:卷积核的权重在整个输入数据上是共享的,这进一步减少了参数数量,并使得模型能够学习到全局特征。
  2. 池化层(Pooling Layer)

    • 作用:池化层用于降低特征图的空间尺寸,从而减少参数数量和计算量,同时使特征检测更加鲁棒。
    • 类型:最常见的池化操作是最大池化(Max Pooling)和平均池化(Average Pooling)。
    • 最大池化:在给定的池化窗口内选择最大值作为输出,用于保留最显著的特征。
    • 平均池化:计算池化窗口内所有值的平均数作为输出,用于平滑特征。
    • 下采样:池化层通常用于在卷积层之后进行下采样(downsampling),减少数据的空间维度。
  3. 全连接层(Fully Connected Layer / Dense Layer)

    • 作用:全连接层是CNN中的分类器部分,用于将卷积层和池化层提取的特征进行整合,进行最终的分类或回归任务。
    • 参数:全连接层的参数包括神经元的数量和激活函数。
    • 连接:在全连接层中,每个神经元都与前一层的所有激活值相连,因此称为“全连接”。
    • 特征整合:全连接层将前面层提取的特征进行整合,学习特征之间的复杂关系。
    • 输出:在分类任务中,最后一个全连接层通常有与类别数量相同的神经元数,并使用softmax激活函数进行多类别分类。

在构建CNN时,通常会将多个卷积层、池化层和全连接层堆叠起来,以构建一个深度网络,从而学习从低级到高级的特征表示。这种结构使得CNN在图像识别、分类和处理任务中表现出色。

  • 27
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值