目录
前言
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
一、我的环境
- 电脑系统:Windows 11
- 语言环境:Python 3.9.7
- 编辑器:Jupyter Lab
- 深度学习环境:TensorFlow2.4.1
二、代码实现
1. 前期工作
1.1 导入数据
#导入数据
# 导入 pathlib 模块
import pathlib
data_dir = "F://boshiqijian//kechengxuexi//Deep Learning//365xunlianying//data//46-data//"
data_dir = pathlib.Path(data_dir)
1.2 查看数据
#查看数据
#查看数据
image_count = len(list(data_dir.glob('*/*/*.jpg')))
print("图片总数为:",image_count)
from PIL import Image
import pathlib
# 设置数据目录
data_dir = pathlib.Path("F://boshiqijian//kechengxuexi//Deep Learning//365xunlianying//data//46-data//")
# 获取所有Monkeypox文件夹下的jpg文件
Monkeypox = list(data_dir.glob('train/nike/*.jpg'))
# 检查是否找到了文件
if Monkeypox:
# 打开第一个找到的图像文件
image = Image.open(str(Monkeypox[0]))
image.show() # 显示图像
else:
print("No JPEG files found in Monkeypox directory.")
2. 数据预处理
2.1 加载数据
使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中
测试集与验证集的关系:
- 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
- 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
- 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
#数据预处理
#设置批次大小和图像尺寸
batch_size = 32
img_height = 224
img_width = 224
#这里定义了批次大小为32,以及图像的高和宽都设置为224像素
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
import tensorflow as tf
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
"F://boshiqijian//kechengxuexi//Deep Learning//365xunlianying//data//46-data//train//",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
"F://boshiqijian//kechengxuexi//Deep Learning//365xunlianying//data//46-data//test//",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
#获取类名:从训练数据集中获取类名列表
class_names = train_ds.class_names
print(class_names)
2.2 可视化数据
#可视化数据
import matplotlib.pyplot as plt
plt.figure(figsize=(20, 10))
for images, labels in train_ds.take(1):
for i in range(20):
ax = plt.subplot(5, 10, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
1.3 再次检查数据
#再次检查数据
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
● Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
● Label_batch是形状(32,)的张量,这些标签对应32张图片
1.4 配置数据集
● shuffle() :打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
● prefetch() :预取数据,加速运行
prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:
使用prefetch()可显著减少空闲时间:
cache() :将数据集缓存到内存当中,加速运行
#配置数据集
"""这行代码将tf.data.AUTOTUNE赋值给变量AUTOTUNE。
tf.data.AUTOTUNE是一个特殊的参数,当用于prefetch函数的buffer_size参数时,它会让TensorFlow自动调整预取(prefetching)的效率。"""
AUTOTUNE = tf.data.AUTOTUNE
"""这行代码对训练数据集train_ds进行配置:
.cache():将数据集的元素缓存到内存中。这意味着数据集的元素在第一次迭代时会被加载到内存中,后续迭代可以更快地访问这些数据。
.shuffle(1000):将数据集随机打乱。参数1000表示缓冲区的大小,即在打乱数据之前会先从数据集中收集1000个元素。
.prefetch(buffer_size=AUTOTUNE):预取数据,以便在模型训练时可以异步加载数据,从而提高训练效率。AUTOTUNE参数让TensorFlow根据当前系统的性能自动调整预取的缓冲区大小。
"""
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
"""这行代码对验证数据集val_ds进行配置:
.cache():同样地,将数据集的元素缓存到内存中。
.prefetch(buffer_size=AUTOTUNE):预取数据,以便在模型验证时可以异步加载数据,提高验证效率。
"""
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
3. 构建CNN网络
卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入形状是 (180, 180, 3)。我们需要在声明第一层时将形状赋值给参数input_shape。
网络结构图:
#构建CNN网络
#构建CNN网络
"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995
layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
在上一篇文章花朵识别中,训练准确率与验证准确率相差巨大就是由于模型过拟合导致的
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""
import tensorflow as tf
from tensorflow.keras import layers
model = tf.keras.models.Sequential([
layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3
layers.AveragePooling2D((2, 2)), # 池化层1,2*2采样
layers.Conv2D(32, (3, 3), activation='relu'), # 卷积层2,卷积核3*3
layers.AveragePooling2D((2, 2)), # 池化层2,2*2采样
layers.Dropout(0.3),
layers.Conv2D(64, (3, 3), activation='relu'), # 卷积层3,卷积核3*3
layers.Dropout(0.3),
layers.Flatten(), # Flatten层,连接卷积层与全连接层
layers.Dense(128, activation='relu'), # 全连接层,特征进一步提取
layers.Dense(num_classes) # 输出层,输出预期结果
])
model.summary() # 打印网络结构
4. 编译
在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
● 损失函数(loss):用于衡量模型在训练期间的准确率。
● 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
● 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
4.1 设置动态学习率
ExponentialDecay函数:
tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。
🔎 主要参数:
● initial_learning_rate(初始学习率):初始学习率大小。
● decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
● decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
●staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。
#训练模型
#设置动态学习率
# 设置初始学习率
initial_learning_rate = 0.1
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=10, # 敲黑板!!!这里是指 steps,不是指epochs
decay_rate=0.92, # lr经过一次衰减就会变成 decay_rate*lr
staircase=True)
# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
model.compile(optimizer=optimizer,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:
learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)
学习率大与学习率小的优缺点分析:
学习率大
● 优点:
○ 1、加快学习速率。
○ 2、有助于跳出局部最优值。
● 缺点:
○ 1、导致模型训练不收敛。
○ 2、单单使用大学习率容易导致模型不精确。
学习率小
● 优点:
○ 1、有助于模型收敛、模型细化。
○ 2、提高模型精度。
● 缺点:
○ 1、很难跳出局部最优值。
○ 2、收敛缓慢。
4.2 早停与保存最佳模型参数
EarlyStopping()参数说明:
● monitor: 被监测的数据。
● min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
● patience: 没有进步的训练轮数,在这之后训练就会被停止。
● verbose: 详细信息模式。
● mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
● baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
● estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。
#早停与保存最佳模型参数
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
epochs = 50
# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.weights.h5',
monitor='val_accuracy',
verbose=1,
save_best_only=True,
save_weights_only=True)
# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy',
min_delta=0.001,
patience=20,
verbose=1)
5. 训练模型
#模型训练
history = model.fit(train_ds,
validation_data=val_ds,
epochs=epochs,
callbacks=[checkpointer, earlystopper])
6. 模型评估
#模型评估
#Loss与Accuracy图
#从模型训练历史中提取训练集的准确率数据
acc = history.history['accuracy']
#从模型训练历史中提取验证集的准确率数据
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
#指定图片进行预测
# 加载效果最好的模型权重
model.load_weights('best_model.weights.h5')
from PIL import Image
import numpy as np
# img = Image.open("./45-data/Monkeypox/M06_01_04.jpg") #这里选择你需要预测的图片
img = Image.open("F://boshiqijian//kechengxuexi//Deep Learning//365xunlianying//data//46-data//test//nike//1.jpg") #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])
img_array = tf.expand_dims(image, 0) #/255.0 # 记得做归一化处理(与训练集处理方式保持一致)
predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])
三、心得体会
代码解读见注释
不要怕报错 善于利用AI解决问题
关于动态学习率,将initial_learning_rate调整小并未得到想要的效果