AIGC Stable Diffusion prompt

该文介绍了如何使用StableDiffusion模型创建具有国风特色的女性人物图像,特征包括细致的面部、妆容、华丽的服饰和东亚风格的背景。模型参数确保了超高清分辨率和完美的光照效果,避免了低质量、不良构图等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 【基于Stable Diffusion生成国风人物图片】

 

prompt:

<lora:fashionGirl_v50:0.66>, (best quality:1.3, masterpiece:1.3), ultra high res, (1girl, solo), atmospheric perspective, detailed face, upper body, make up, pink lips, parted lips, shiny skin, (brown hair), very long hair, looking at viewer, red eyes, earrings, small breasts, slim body,(white silk) ,(((east asian architecture, riverside, beautiful background))), perfect lighting, (front lighting), physically-based rendering,

negative prompt:

EasyNegative, ((backlight)), wood, wood texture, (watermark, logo), bad anatomy, nude, topless, extra ears, fewer fingers, extra fingers, (extra hands), bad hands, sketches, (low quality:2), (worst quality:2), skin spot, age spot, (((nipples))), glans, skin blemishes, ((freckle)),

模型:3Guofeng3_v33.safetensors [4078eb4174]

参数设置:

生成图片:

### Stable Diffusion Sampler 综合指南 #### 什么是采样器? 在Stable Diffusion中,去噪过程被称为采样。每一步都会产生新的图像样本,这一过程中使用的方法称为采样方法或采样器[^3]。 #### 常见的采样器及其特点 WebUI界面下提供了多种类型的采样器供选择,比如Euler a, Heun, DDIM等。这些采样器基于不同的算法实现,适用于不同类型的任务需求: - **Euler a (Ancestral)**: 这是一种简单而快速的选择,适合于大多数情况下的高效生成。 - **Heun**: 提高了精度并减少了伪影的可能性,尤其对于复杂场景更为有效。 - **DDIM (Denoising Diffusion Implicit Models)**: 能够提供更平滑的结果过渡效果,并允许用户更好地控制最终输出的质量和细节层次[^2]。 #### 如何选择合适的采样器? 当面对具体应用场景时,可以根据以下几个方面来决定最适合自己的选项: - 如果追求速度优先,则可以选择像 Euler 或者 Ancestral Sampling 这样的方案; - 对于需要更高画质的情况,可以尝试采用 Heun 方法或者其他高级变体; - 当希望获得更加细腻和平滑的变化趋势时,推荐考虑 DDIM 类型的策略[^1]。 ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained(&#39;model_name&#39;) image = pipeline(prompt="a photograph of an astronaut riding a horse", num_inference_steps=50).images[0] ``` 此代码片段展示了如何加载预训练模型并通过指定参数`num_inference_steps`调整迭代次数来进行图片合成操作。通过改变所使用的采样器名称作为额外输入参数之一,即可轻松切换不同模式下的性能表现评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值