Features From Accelerated Segment Test

FAST特征点检测

Features From Accelerated Segment Test

1. FAST算法原理

      博客中已经介绍了很多图像特征检测算子,我们可以用LoG或者DoG检测图像中的Blobs(斑点检测),可以根据图像局部的自相关函数来求得Harris角点(Harris角点),后面又提到了两种十分优秀的特征点及它们的描述方法SIFT特征SURF特征。SURF特征算是为了提高运算效率对SIFT特征的一种近似,虽然在有些实验环境中已经达到了实时,但是我们实践工程应用中,特征点的提取与匹配只是整个应用算法中的一部分,所以我们对于特征点的提取必须有更高的要求,从这一点来看前面介绍的的那些特征点方法都不可取。

      为了解决这个问题,Edward Rosten和Tom Drummond在2006年发表的“Machine learning for high-speed corner detection[1]”文章中提出了一种FAST特征,并在2010年对这篇论文作了小幅度的修改后重新发表[2]。FAST的全称为Features From Accelerated Segment Test。Rosten等人将FAST角点定义为:若某像素点与其周围领域内足够多的像素点处于不同的区域,则该像素点可能为角点。也就是某些属性与众不同,考虑灰度图像,即若该点的灰度值比其周围领域内足够多的像素点的灰度值大或者小,则该点可能为角点。

2. FAST算法步骤

 

  1. 从图片中选取一个像素 P P,下面我们将判断它是否是一个特征点。我们首先把它的亮度值设为 Ip Ip
  2. 设定一个合适的阈值 t t
  3. 考虑以该像素点为中心的一个半径等于3像素的离散化的Bresenham圆,这个圆的边界上有16个像素(如图1所示)。

    A corner in the image

    图1 FAST特征点示意图

  4. 现在,如果在这个大小为16个像素的圆上有 n n个连续的像素点,它们的像素值要么都比 Ip+t Ip+t大,要么都比 Ipt Ip−t小,那么它就是一个角点。(如图1中的白色虚线所示)。 n n的值可以设置为12或者9,实验证明选择9可能会有更好的效果。

 

     上面的算法中,对于图像中的每一个点,我们都要去遍历其邻域圆上的16个点的像素,效率较低。我们下面提出了一种高效的测试(high-speed test)来快速排除一大部分非角点的像素。该方法仅仅检查在位置1,9,5和13四个位置的像素,首先检测位置1和位置9,如果它们都比阈值暗或比阈值亮,再检测位置5和位置13。如果 P P是一个角点,那么上述四个像素点中至少有3个应该必须都大于 Ip+t Ip+t或者小于 Ipt Ip−t,因为若是一个角点,超过四分之三圆的部分应该满足判断条件。如果不满足,那么 p p不可能是一个角点。对于所有点做上面这一部分初步的检测后,符合条件的将成为候选的角点,我们再对候选的角点,做完整的测试,即检测圆上的所有点。

 

上面的算法效率实际上是很高的,但是有点一些缺点:

  1. 当我们设置 n<12 n<12时就不能使用快速算法来过滤非角点的点;
  2. 检测出来的角点不是最优的,这是因为它的效率取决于问题的排序与角点的分布;
  3. 对于角点分析的结果被丢弃了;
  4. 多个特征点容易挤在一起。

3. 使用机器学习做一个角点分类器

 

  1. 首先选取你进行角点提取的应用场景下很多张的测试图片。
  2. 运行FAST角点检测算法来获取测试图片集上的所有角点特征。
  3. 对于每个角点,我们把它邻域圆上的16个点存储下来保存在一个vector内,处理所有步骤2中得到的角点,并把它们存储在 P P中。
  4. 对于图像上的点 p p,它周围邻域圆上位置为 x,x{116} x,x∈{1…16}的点表示为 px p→x,可以用下面的判断公式将该点 px p→x分为3类:
    Spx=d,s,b,IpxIptIptIpx<Ip+tIp+tIpx(darker)(similar)(brighter) Sp→x={d,Ip→x≤Ip–t(darker)s,Ip−t≤Ip→x<Ip+t(similar)b,Ip+t≤Ip→x(brighter)
  5. P P为训练图像集中所有像素点的集合,我们任意16个位置中的一个位置 x x,可以把集合 P P分为三个部分 Pd,Ps Pd,Ps Pb Pb,其中 Pd Pd的定义如下, Ps Ps Pb Pb的定义与其类似
    Pb={pP:Spx=b} Pb={p∈P:Sp→x=b}
    换句话说,对于任意给定的位置 x x,它都可以把所有图像中的点分为三类,第一类 Pd Pd包括了所有位置 x x处的像素在阈值 t t下暗于中心像素,第二类 Ps Ps包括了所有位置 x x处的像素在阈值 t t下近似于中心像素, Pb Pb包括了所有位置 x x处的像素在阈值 t t下亮于中心像素。
  6. 定义一个新的布尔变量 Kp Kp,如果 p p是一个角点,那些 Kp Kp为值,否则为假。
  7. 使用ID3算法(决策树分类器)来查询每一个子集。
  8. 递归计算所有的子集直到 Kp Kp的熵为0;
  9. 被创建的决策树就用于于其他图片的FAST检测。

4. 非极大值抑制

从邻近的位置选取了多个特征点是另一个问题,我们可以使用Non-Maximal Suppression来解决。

  1. 为每一个检测到的特征点计算它的响应大小(score function) V V。这里 V V定义为点 p p和它周围16个像素点的绝对偏差的和。
  2. 考虑两个相邻的特征点,并比较它们的 V V值。
  3. V V值较低的点将会被删除。

5. OpenCV中进行FAST特征检测

在OpenCV中进行FAST特征提取的函数为FAST。它一共有4个参数,第一个参数是输入的图像,第二个是返回的特征点,第三个是定义的阈值,第四个决定是否使用非极大值抑制。

void FAST(InputArray image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSuppression=true )

C++: void FASTX(InputArray image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSuppression, int type)

另外还有一个接口为FASTX,它提供了第五个参数type用来指定FAST检测中像素邻域圆的参数:TYPE_9_16、TYPE_7_12、TYPE_5_8。

#include <opencv2/core/core.hpp> 
#include <opencv2/highgui/highgui.hpp> 
#include <opencv2/imgproc/imgproc.hpp> 
#include <opencv2/features2d/features2d.hpp>

using namespace cv; 
using namespace std;

int main(int argc, char** argv) 
{ 
    Mat img = imread("box.png"); 
    std::vector<KeyPoint> keypoints; 
    FAST(img, keypoints, 20); 
    //-- Draw keypoints 
    Mat img_keypoints; 
    drawKeypoints(img, keypoints, img_keypoints, Scalar::all(-1), DrawMatchesFlags::DEFAULT); 
    //-- Show detected (drawn) keypoints 
    imshow("Keypoints", img_keypoints);

    waitKey(0); 
    return 0; 
}

 image    image

6. 总结

FAST算法比其他已知的角点检测算法要快很多倍,但是当图片中的噪点较多时,它的健壮性并不好,而且算法的效果还依赖于一个阈值 t t。而且FAST不产生多尺度特征而且FAST特征点没有方向信息,这样就会失去旋转不变性。

[1] Edward Rosten and Tom Drummond, “Machine learning for high speed corner detection” in 9th European Conference on Computer Vision, vol. 1, 2006, pp. 430–443.

[2] Edward Rosten, Reid Porter, and Tom Drummond, “Faster and better: a machine learning approach to corner detection” in IEEE Trans. Pattern Analysis and Machine Intelligence, 2010, vol 32, pp. 105-119.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值