京东推荐系统实践——打造千人千面的个性化推荐引擎

本文介绍了京东的推荐系统,包括80+推荐产品、20+推荐服务,以及京东推荐产品的架构和优化方向。通过离线CTR预测、用户行为分析和多种推荐算法,实现千人千面的个性化推荐,旨在提升用户体验和购买转化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考京东-刘思喆

京东推荐产品及架构

通用模型的应用

离线CTR预测实例

实验与监控

京东推荐产品

  • 80+推荐产品,包括移动端和web端
  • 20+推荐服务,支撑EDM、广告、微信端等
  • 遍布用户网络的各个环节

    推荐系统的价值

  • 挖掘用户潜在购买需求

  • 缩短用户到商品的距离
  • 用户需求不明确时提供参考
  • 满足用户的好奇心

推荐产品实例
不同位置的推荐产品定位不同
单品页:购买了意图
过滤页提高客单价
购物车页:购物决策
无结果页:减少跳出率
订单完成页:交叉销售
关注推荐:提高转化
我的京东推荐:提高忠诚度
首页猜你喜欢:吸引用户
京东推荐系统架构
data datawarehouse mercury frontend diviner recommender kaflka key_value store stats hdfs hadoop R Vowpal Wabbit Spark MPI buffalo
京东推荐算法优化方向
以数据分析为工具,提升数据的质量和覆盖度,增强对业务的理解(25%)
测试不同算法在不同数据源的效果,提高召回模型的质量,增加结果辨识度(50%)
以用户反

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值