【专题:毫米波】简介

        什么叫毫米波?严格的讲,毫米波频率为30GHz至300GHz,对应波长分别为10mm到1mm。在移动通信领域,通常把24GHz-100GHz称为5G毫米波。

 

        我们知道无线容量最根本的理论来源是香农定理:Wlog(1+S/N)。其中,W是链路的分配频谱带宽,S即signal(有用信号)以及噪声信号Noise。从此可以看出,当提高链路的频谱带宽,增加有用信号的功率以及降低噪声信号的功率,就可以实现无线容量的提升。然而,相比于其他繁杂的实现方法和技术,采用更高频率频段效果最明显,也最直接,也是在理论上更容易实现。因此,高频波段尤其是毫米波吸引了通信界的大量的关注。目前该频段的可用带宽十分充裕。

 

        但是,毫米波的研究也面临着大量的挑战。这种挑战主要是集中在其传输上面。在通过自由空间传输,信号的衰减也会随着频率的增大而增加,因此毫米波的可用路径长度很短,大约只有100~200米。此外,在物理特性上,毫米波还是存在很多问题。毫米波内部和周围的建筑和物体(包括人在内)都会阻挡信号。雨和植物会进一步使毫米波出现衰减,并且衍射(指较长波长在遇到障碍物时出现弯曲的现象)效果也会大打折扣。即便是可以顺利反射较长波长的表面,要反射毫米波也十分困难,反而会使信号发生扩散。

 

        虽然毫米波的特征使得其研究面临很多挑战。但是在5G中,毫米波通信也面临着很多机遇。在未来5G通信系统技术中,运营商会在在城市人口密集区域部署大量小型基站,拉近接入点和用户之间的距离,这种组网称为超密集小小区(Urtra Dense Small Cell,UDN)组网技术。随着大量小型基站的部署,使得基站与用户终端之间的距离大大缩小,大大增加了视距传输(Line of Sight, LOS)的几率。 未来UDN网络的存在为毫米波的传输提供了更有利的条件。

 

 

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值