给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174
,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767
开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000
;否则将计算的每一步在一行内输出,直到 6174
作为差出现,输出格式见样例。注意每个数字按 4
位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
我的代码:
注意点:输入的数字,被减数和每轮得到的数字是有可能是三位的,要补全成四位。
n=[x for x in input()]
while len(n)<4:
n.insert(0,'0')
if n[0]==n[1] and n[1]==n[2] and n[2]==n[3]:
print(n[0]*4,'-',n[0]*4,'= 0000',end='')
else:
while n!='6174':
a=sorted(n,reverse=True)
b=sorted(n)
a=a[0]+a[1]+a[2]+a[3]
b=b[0]+b[1]+b[2]+b[3]
n=int(a)-int(b)
if n<1000:
print(a,'-',b,'=','0'+str(n))
n='0'+str(n)
else:
print(a,'-',b,'=',n)
n=str(n)