leetcode:70. Climbing Stairs

博客围绕爬楼梯问题展开,指出这是一个动态规划问题。介绍了不同台阶数的基础情况,如 n<=0、n=1、n=2 时的走法数量。阐述了解题关键思路,还说明可构建数组求解,本质类似斐波那契数列,并给出 Java 实现及相关参考链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sorry ,giving up..

想了下:

/*
思路整理:
1 和 2步
2=1+1
想考察什么? 排列组合,分治
奇数偶数?
前缀树?
C21 
*/
class Solution {
public:
    int climbStairs(int n) {
        int count=0;
        
        
    }
};

想的不太清楚,

 

 

 

大佬的答案:

liaison's avatarliaisonStaff

3862

Last Edit: October 22, 2018 11:15 AM

75.9K VIEWS

The problem seems to be a dynamic programming one. Hint: the tag also suggests that!
Here are the steps to get the solution incrementally.

 

  •  

    Base cases:
    if n <= 0, then the number of ways should be zero.
    if n == 1, then there is only way to climb the stair.
    if n == 2, then there are two ways to climb the stairs. One solution is one step by another; the other one is two steps at one time.

     

  •  

    The key intuition to solve the problem is that given a number of stairs n, if we know the number ways to get to the points [n-1] and [n-2] respectively, denoted as n1 and n2 , then the total ways to get to the point [n] is n1 + n2. Because from the [n-1] point, we can take one single step to reach [n]. And from the [n-2] point, we could take two steps to get there.

     

  •  

    The solutions calculated by the above approach are complete and non-redundant. The two solution sets (n1 and n2) cover all the possible cases on how the final step is taken. And there would be NO overlapping among the final solutions constructed from these two solution sets, because they differ in the final step.

     

 

Now given the above intuition, one can construct an array where each node stores the solution for each number n. Or if we look at it closer, it is clear that this is basically a fibonacci number, with the starting numbers as 1 and 2, instead of 1 and 1.

 

The implementation in Java as follows:

 

public int climbStairs(int n) {
    // base cases
    if(n <= 0) return 0;
    if(n == 1) return 1;
    if(n == 2) return 2;
    
    int one_step_before = 2;
    int two_steps_before = 1;
    int all_ways = 0;
    
    for(int i=2; i<n; i++){
    	all_ways = one_step_before + two_steps_before;
    	two_steps_before = one_step_before;
        one_step_before = all_ways;
    }
    return all_ways;
}

 

https://leetcode.com/problems/climbing-stairs/discuss/163347/Python-3000DP-or-tm Python - 3000字长文解释DP基础 | 公瑾™

 

LeetCode Climbing Stairs 递归求解和动态规划法

 

 

https://blog.csdn.net/kenden23/article/details/17377869 LeetCode Climbing Stairs 递归求解和动态规划法

内容概要:本文详细介绍了QY20B型汽车起重机液压系统的设计过程,涵盖其背景、发展史、主要运动机构及其液压回路设计。文章首先概述了汽车起重机的分类和发展历程,强调了液压技术在现代起重机中的重要性。接着,文章深入分析了QY20B型汽车起重机的五大主要运动机构(支腿、回转、伸缩、变幅、起升)的工作原理及相应的液压回路设计。每个回路的设计均考虑了性能要求、功能实现及工作原理,确保系统稳定可靠。此外,文章还详细计算了支腿油缸的受力、液压元件的选择及液压系统的性能验算,确保设计的可行性和安全性。 适合人群:从事工程机械设计、液压系统设计及相关领域的工程师和技术人员,以及对起重机技术感兴趣的高等院校学生和研究人员。 使用场景及目标:①为从事汽车起重机液压系统设计的工程师提供详细的参考案例;②帮助技术人员理解和掌握液压系统设计的关键技术和计算方法;③为高等院校学生提供学习和研究起重机液压系统设计的实用资料。 其他说明:本文不仅提供了详细的液压系统设计过程,还结合了实际工程应用,确保设计的实用性和可靠性。文中引用了大量参考文献,确保设计依据的科学性和权威性。阅读本文有助于读者深入了解汽车起重机液压系统的设计原理和实现方法,为实际工程应用提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值