leetcode:70. Climbing Stairs

sorry ,giving up..

想了下:

/*
思路整理:
1 和 2步
2=1+1
想考察什么? 排列组合,分治
奇数偶数?
前缀树?
C21 
*/
class Solution {
public:
    int climbStairs(int n) {
        int count=0;
        
        
    }
};

想的不太清楚,

 

 

 

大佬的答案:

liaison's avatarliaisonStaff

3862

Last Edit: October 22, 2018 11:15 AM

75.9K VIEWS

The problem seems to be a dynamic programming one. Hint: the tag also suggests that!
Here are the steps to get the solution incrementally.

 

  •  

    Base cases:
    if n <= 0, then the number of ways should be zero.
    if n == 1, then there is only way to climb the stair.
    if n == 2, then there are two ways to climb the stairs. One solution is one step by another; the other one is two steps at one time.

     

  •  

    The key intuition to solve the problem is that given a number of stairs n, if we know the number ways to get to the points [n-1] and [n-2] respectively, denoted as n1 and n2 , then the total ways to get to the point [n] is n1 + n2. Because from the [n-1] point, we can take one single step to reach [n]. And from the [n-2] point, we could take two steps to get there.

     

  •  

    The solutions calculated by the above approach are complete and non-redundant. The two solution sets (n1 and n2) cover all the possible cases on how the final step is taken. And there would be NO overlapping among the final solutions constructed from these two solution sets, because they differ in the final step.

     

 

Now given the above intuition, one can construct an array where each node stores the solution for each number n. Or if we look at it closer, it is clear that this is basically a fibonacci number, with the starting numbers as 1 and 2, instead of 1 and 1.

 

The implementation in Java as follows:

 

public int climbStairs(int n) {
    // base cases
    if(n <= 0) return 0;
    if(n == 1) return 1;
    if(n == 2) return 2;
    
    int one_step_before = 2;
    int two_steps_before = 1;
    int all_ways = 0;
    
    for(int i=2; i<n; i++){
    	all_ways = one_step_before + two_steps_before;
    	two_steps_before = one_step_before;
        one_step_before = all_ways;
    }
    return all_ways;
}

 

https://leetcode.com/problems/climbing-stairs/discuss/163347/Python-3000DP-or-tm Python - 3000字长文解释DP基础 | 公瑾™

 

LeetCode Climbing Stairs 递归求解和动态规划法

 

 

https://blog.csdn.net/kenden23/article/details/17377869 LeetCode Climbing Stairs 递归求解和动态规划法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值