吴恩达机器学习知识点问答(仅题目)

答案可看黄海广学习笔记

第一周

1.批量梯度下降公式;
2.线性回归的梯度下降公式;

第二周

1.多变量线性回归梯度下降公式;
2.正规方程公式;

第三周 逻辑回归

1.Sigmoid 函数公式g(z);
2.逻辑回归的预测公式;
3.逻辑回归的代价函数;
4.逻辑回归的梯度下降公式;
5.正则化(Regularization)公式;
6.线性回归的正则化代价函数公式以及梯度下降公式;
7.逻辑回归的正则化代价函数公式以及梯度下降公式;

第四周 神经网络

1.神经网络前向传播公式;

第五周 神经网络的学习

1.神经网络的代价函数;
2.神经网络反向传播算法;

第六周 应用机器学习的建议

1.交叉验证集的作用;
2.high bais 与high variance的情况;
3.Precision 与 Recall的定义;
4.查准率与查全率权衡公式:F1score;

第七周 支持向量机

1.支持向量机推导;

第八周 聚类

1.K-means算法实现与伪代码描述;
2.K-means初始化方法;
3.PCA降维算法;

第九周 推荐系统

1.协同过滤概念;

第十周 大规模机器学习

1.随机梯度下降概念Stochastic Gradient Descent;
2.mini-batch梯度下降概念;
3.OCR实现步骤。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值