答案可看黄海广学习笔记
第一周
1.批量梯度下降公式;
2.线性回归的梯度下降公式;
第二周
1.多变量线性回归梯度下降公式;
2.正规方程公式;
第三周 逻辑回归
1.Sigmoid 函数公式g(z);
2.逻辑回归的预测公式;
3.逻辑回归的代价函数;
4.逻辑回归的梯度下降公式;
5.正则化(Regularization)公式;
6.线性回归的正则化代价函数公式以及梯度下降公式;
7.逻辑回归的正则化代价函数公式以及梯度下降公式;
第四周 神经网络
1.神经网络前向传播公式;
第五周 神经网络的学习
1.神经网络的代价函数;
2.神经网络反向传播算法;
第六周 应用机器学习的建议
1.交叉验证集的作用;
2.high bais 与high variance的情况;
3.Precision 与 Recall的定义;
4.查准率与查全率权衡公式:F1score;
第七周 支持向量机
1.支持向量机推导;
第八周 聚类
1.K-means算法实现与伪代码描述;
2.K-means初始化方法;
3.PCA降维算法;
第九周 推荐系统
1.协同过滤概念;
第十周 大规模机器学习
1.随机梯度下降概念Stochastic Gradient Descent;
2.mini-batch梯度下降概念;
3.OCR实现步骤。