深度学习之路—写在开题前

本文记录了作者从接触深度学习到进行GPU实践的过程,包括学习吴恩达机器学习课程、研究神经网络、使用MatConvNet配置GPU环境的艰辛历程,以及在模型调优和预处理方面的经验。目前面临的挑战包括预处理的重要性、网络结构改进、GPU资源限制等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

明天即将研究生开题答辩,旁边机器还在跑着程序验证最新的网络结构,在笔记本上敲打心情日记。接到深度学习目标识别的题目真是阴差阳错,今年4月份alphago获胜的时候,王老师表示很关心这个方向,希望我们也做一个“狗”出来。我们都把它当玩笑了,事后,我尝试接触神经网络的知识,就想轻碰这个坑,拿它预测个波形就行了,也没想到日后会成为研究方向。

       正直同学们都很关注机器学习,无意间女票跟我提了coursera吴恩达的机器学习教程。我就注册了个号,跟着视频学习,在神经网络这块学的比较认真。同时,结合着李航的《统计学习方法》从理论上辅助理解。看完神经网络部分后,我没有往下看支持向量机的部分,就做了神经网络识别mnist的作业,并打算做fpga实现,因为实验室本来是以硬件为主,打算做个硬件加速实现神经网络。后来只做了最后的test部分,并发了篇水文。

       再到后来,王老师知道我在研究神经网络相关的东西,扔给我一本《深度学习方法及应用》。翻了一遍完全看不懂,发现坑很深。于是在网上找到了standford的ufldl教程,又开始学习和深度学习相关的知识,从softmax开始。在这个过程中,通过作业,基本了解了卷积神经网络的模型,还做了相关的调参实验。

       做了简单的调试实验后,模型只局限于4层,而且不好扩展。恰好是matlab的作业题,故搜到matlab的深度学习工具,deeplearningtool。把框架代码阅读了一遍,其中BP那部分至少读了n遍。那是个6层的神经网络,一个输入,两组conv-pool,一层softmax。又做了若干调参实验。后来又自行添加了较复杂的结构,加了全连接层&#x

深度学习是一种人工智能技术,近年来在各个领域都有广泛的应用。其中,深度学习在气象领域中的应用越来越受到研究者的重视。本文旨在探讨深度学习技术在降水预测中的应用。 降水预测一直是气象学中一个重要的研究课题。传统的气象学方法主要是利用数学模型和物理原理进行降水的数值模拟,但是这种方法的预测精度受到许多因素的影响,如模型参数选择、数据质量、模拟误差等等。随着深度学习技术的不断发展,基于数据驱动的深度学习方法开始应用于气象领域,取得了一定的预测精度和应用效果。 深度学习通过构建神经网络,可以从大量的历史降水数据中提取出特征,并利用这些特征对未来的降水进行预测。相对于传统方法,深度学习技术可以更好地处理数据之间的非线性关系,同时可以自适应地进行模型优化,从而提高了预测精度。 在本文中,我们将研究深度学习技术在降水预测中的应用,并通过实验验证其预测精度。具体来说,我们将采集大量历史降水数据,并利用深度学习技术构建降水预测模型。在模型训练过程中,我们将采用常用的深度学习算法,并对模型进行参数调整和优化。最终,我们将通过对模型进行测试和评估,验证深度学习技术在降水预测中的应用效果,并对未来的研究方向进行探讨。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值