https://arxiv.org/abs/2312.07100
在高分辨率场景下,现有的显著目标检测方法难以同时满足快速推理和准确结果的要求。它们受到用于高分辨率图像的公共数据集和高效网络模块的质量的限制。
为了缓解这些问题,我们构建一个显著对象匹配数据集HRSON和一个轻量级网络PSUNet。考虑到移动部署框架的高效推理,我们设计了对称像素置乱模块和轻量级模块TRSU。
在高分辨率基准数据集上,与13种SOD法相比,PSUNet具有最好的客观性能。客观评价结果优于U2Net,后者的参数值是我们网络的10倍。在骁龙8第二代移动平台上,推断一张640x640图像仅需113ms。在主观评价上,评价结果优于行业基准IOS16(背景式提标)。
本文方案
编解码器的整体结构类似于U2Net,由所提轻量级TRSU模块组成。所提TRSU单元也具有UNet结构。在3x3卷积的一层之后,通过深度可分离卷积和最大合并的多个组合的堆叠将特征地图采样到较小的大小。然后在经过几层深度可分离卷积后,通过相同数量的上采样和深度可分离卷积的组合来恢复分辨率。最终输出是经过一层3x3卷积后得到的。TRSU通过跳过连接控制网络宽度。MIDLBlock(图1©